Grouting is widely used in tunnel construction as a measure to reduce water seepage through rock fractures. Fresh cement-based grout often comes into contact with flowing water after being injected into rock fractures, especially in post-excavation grouting scenarios in rock tunnels or pre-excavation grouting in deep tunnels and remedial grouting in dam foundations. The flowing water can cause erosion of the fresh grout and viscous fingering in the grout, which reduces the efficiency of the grouting. In the present study, experimental tests using a simulated fracture were carried out to investigate grout erosion and viscous fingering in the time period after the injection stops until the grout has gained sufficient strength. The aim of the tests was to evaluate the validity of the existing criteria used to determine grout erosion and viscous fingering. The test results showed significant grout erosion and viscous fingering caused by the flowing water despite these behaviors not being expected according to the existing criteria. The reduction in the grouted area was up to 50% after 10 min and up to 64% after 60 min. Based on these results, the mechanism of grout erosion and viscous fingering between water and grout is discussed with respect to grouting design strategy. The present study provides a deeper understanding of grout erosion and viscous fingering after the grouting is completed, indicating complex mechanisms of these behaviors and oversimplification in the existing criteria. The results are useful for the design of grouting in fractures with flowing water.
Funder: Swedish Hydropower Centre (SVC)(VKU14170);
Fulltext license: CC BY