We report on the formation of the Cr2C compound using chemical etching-free methodology to extract Al from a Cr2AlC MAX phase thin film. Cr2AlC/Cu assemblies were deposited on sapphire substrates, using magnetron sputtering, and were subsequently annealed in vacuum. The Al from the MAX phase was shown to diffuse into Cu resulting in the formation of Al4Cu9 and causing the MAX phase to collapse into Cr2C grains. These carbide grains were characterized by transmission electron microscopy and the interatomic distances extracted were in good agreement with ab initio calculations predicting the equilibrium volume of the Cr2C phase.