Development of a Candidate Prediction System for DNA Structures in Drug Delivery: A Computational Approach to Predicting Cellular Uptake of DNA Sequences
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesisAlternative title
Utveckling av ett kandidatprediktionssystem för DNA-strukturer vid läkemedelsleverans : Ett programmatiskt sätt att förutsäga celluptagningsförmågan för DNA-sekvenser (Swedish)
Abstract [en]
DNA nanostructures offer a promising platform for precision medicine, with the potential to target specific cells, reduce off-target effects, and improve therapeutic efficacy. In this paper, I present the development of a high-throughput candidate prediction system designed to rank DNA sequences based on their predicted levels of cell uptake—addressing a significant challenge in modern DNA research. The system extracts valuable features from DNA sequence reads and their simulated structures to efficiently reduce and prioritize the most promising candidate sequences within a given library for drug delivery applications. This is achieved by developing a predictive machine learning model trained to rank DNA sequences according to their predicted cellular uptake. Additionally, the system integrates advanced computational and machine learning tools into the pipeline, aligning with broader trends in computational healthcare innovation.
Abstract [sv]
DNA-nanostrukturer erbjuder en lovande plattform för precisionsmedicin med potential att rikta in sig på specifika celler, minska oönskade bieffekter och förbättra den terapeutiska effekten. I denna rapport presenterar jag utvecklingen av ett högkapacitetskandidatprediktionssystem utformat för att rangordna DNA-sekvenser baserat på deras predicerade nivåer av cellupptagning—vilket bemöter en betydande utmaning för forskning inom DNA. Systemet extraherar värdefulla egenskaper från DNA-sekvensläsningar och deras simulerade strukturer för att effektivt minska och prioritera de mest lovande kandidatsekvenserna i ett givet bibliotek för läkemedelsleverans. Detta uppnås genom att utveckla en prediktiv maskininlärningsmodell som tränas för att rangordna DNA-sekvenser efter deras förväntade cellupptagningsnivå. Dessutom integrerar systemet avancerade beräknings- och maskininlärningsverktyg i arbetsflödet, i linje med bredare trender inom innovation för beräkningsbaserad hälsovård.
Place, publisher, year, edition, pages
2025.
Series
TRITA-CBH-GRU ; 2025:012
Keywords [en]
DNA Nanostructures, High-Throughput Screening, Drug Delivery, Cellular Uptake, Candidate Prediction System, Nucleotide Sequences, Feature Extraction, Python, Structural Prediction
Keywords [sv]
DNA-nanostrukturer, Högkapacitetsscreening, Läkemedelsleverans, Cellupptagningsförmåga, Kandidatprediktionssystem, Nukleotidsekvenser, Funktionsutvinning, Python, Förutsägelse av struktur
National Category
Medical Engineering Medical Bioinformatics and Systems Biology Computer Systems Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-361121OAI: oai:DiVA.org:kth-361121DiVA, id: diva2:1943851
External cooperation
SciLifeLab
Subject / course
Medical Engineering
Educational program
Master of Science in Engineering - Medical Engineering
Supervisors
Examiners
2025-03-182025-03-112025-03-18Bibliographically approved