Digestive contents and food webs record the advent of dinosaur supremacyShow others and affiliations
2024 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 636, no 8042, p. 397-403Article in journal (Refereed) Published
Abstract [en]
The early radiation of dinosaurs remains a complex and poorly understood evolutionary event1,2,3,4. Here we use hundreds of fossils with direct evidence of feeding to compare trophic dynamics across five vertebrate assemblages that record this event in the Triassic–Jurassic succession of the Polish Basin (central Europe). Bromalites, fossil digestive products, increase in size and diversity across the interval, indicating the emergence of larger dinosaur faunas with new feeding patterns. Well-preserved food residues and bromalite-taxon associations enable broad inferences of trophic interactions. Our results, integrated with climate and plant data, indicate a stepwise increase of dinosaur diversity and ecospace occupancy in the area. This involved (1) a replacement of non-dinosaur guild members by opportunistic and omnivorous dinosaur precursors, followed by (2) the emergence of insect and fish-eating theropods and small omnivorous dinosaurs. Climate change in the latest Triassic5,6,7 resulted in substantial vegetation changes that paved the way for ((3) and (4)) an expansion of herbivore ecospace and the replacement of pseudosuchian and therapsid herbivores by large sauropodomorphs and early ornithischians that ingested food of a broader range, even including burnt plants. Finally, (5) theropods rapidly evolved and developed enormous sizes in response to the appearance of the new herbivore guild. We suggest that the processes shown by the Polish data may explain global patterns, shedding new light on the environmentally governed emergence of dinosaur dominance and gigantism that endured until the end-Cretaceous mass extinction.
Place, publisher, year, edition, pages
Springer Nature, 2024. Vol. 636, no 8042, p. 397-403
National Category
Evolutionary Biology Geology
Identifiers
URN: urn:nbn:se:uu:diva-551464DOI: 10.1038/s41586-024-08265-4ISI: 001365217000001PubMedID: 39604731Scopus ID: 2-s2.0-85210484332OAI: oai:DiVA.org:uu-551464DiVA, id: diva2:1940909
Part of project
Nests, eggs, and embryos: revealing reproductive behaviour and ontogeny of early dinosaurs, Swedish Research CouncilResurrecting a lost world in Skåne: new light on the end-Triassic mass extinction and the origin of the dinosaur dominated ecosystem, Swedish Research Council
Funder
Swedish Research Council, 2020-06445Knut and Alice Wallenberg FoundationUppsala UniversitySwedish Research Council, 2017-052482025-02-272025-02-272025-04-23Bibliographically approved