Physics Informed Neural Networks (PINNs) for neutronic equations
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesisAlternative title
Physics Informed Neural Networks (PINNs) för neutroniska ekvationer (Swedish)
Abstract [en]
Artificial Intelligence (AI), and more specifically Physics-Informed Neural Networks (PINNs), is playing an increasingly pivotal role in modern scientific and industrial applications, driving innovation across diverse fields. This thesis, "Physics Informed Neural Networks (PINNs) for neutronic equations," explores the potential of AI-driven methods in neutronics, a critical area of nuclear engineering.
In this paper, we analyze the feasibility and limitations of PINNs when applied to neutronic equations, which are characterized by their eigenvalue nature, multidimensional complexity, and multigroup energy formulations. The study also evaluates Data-Enabled PINN (DEPINN), an advanced framework, and its relevance to current industrial applications. By addressing feasibility, accuracy, and practical constraints, this research aims to explore new opportunities for leveraging AI in core physics modeling.
The results demonstrate that while the PINN framework yields satisfactory outcomes for solving the two-group diffusion equation on simple geometries, such as multiple fuel assemblies, it struggles to converge to a physically accurate solution for more complex systems, such as full-core nuclear reactor models. To address this limitation, sensor data or known flux points are integrated into the model, transitioning to a DEPINN framework. The DEPINN approach proves promising, achieving high-quality flux maps and accurate multiplication factors (keff) when provided with data representative of operational sensors (1,300 MW reactor). These capabilities highlight its potential for industrial applications.
Abstract [sv]
Artificiell Intelligens (AI), och mer specifikt Physics-Informed Neural Networks (PINNs), spelar en alltmer central roll inom moderna vetenskapliga och industriella tillämpningar och driver innovation inom en rad olika områden. Denna avhandling, "Physics Informed Neural Networks (PINNs) för neutroniska ekvationer", utforskar potentialen hos AI-baserade metoder inom neutronik, ett kritiskt område inom kärnteknik.
I detta arbete analyseras genomförbarheten och begränsningarna av PINNs vid tillämpning på neutronikekvationer, vilka kännetecknas av sin egenvärdesnatur, multidimensionella komplexitet och flergrupps-energiformuleringar. Studien utvärderar också Data-Enabled PINN (DEPINN), en avancerad metodik, samt dess relevans för nuvarande industriella tillämpningar. Genom att adressera frågor om genomförbarhet, noggrannhet och praktiska begränsningar syftar denna forskning till att identifiera nya möjligheter att utnyttja AI inom kärnfysikalisk modellering.
Resultaten visar att även om PINN-metoden ger tillfredsställande resultat vid lösning av tvågruppers diffusionsekvation för enkla geometrier, såsom bränsleknippen, har den svårt att konvergera mot en fysiskt korrekt lösning för mer komplexa system, exempelvis fullskaliga kärnreaktormodeller. För att hantera denna begränsning integreras sensordata eller kända flödesvärden i modellen, vilket möjliggör en övergång till DEPINN-metoden. DEPINN-ansatsen visar sig lovande och genererar högkvalitativa flödeskartor samt exakta multiplikationsfaktorer (keff) när modellen matas med data representativa för operativa sensorer (1,300 MW-reaktor). Dessa egenskaper belyser dess potential för industriella tillämpningar.
Place, publisher, year, edition, pages
2025.
Series
TRITA-SCI-GRU ; 2024:417
Keywords [en]
PINNs (Physics Informed Neural Networks), DEPINNs (Data-Enabled PINNs), Neutronics, Diffusion equation, 2-Dimensional & 2-Energy Groups Neutronic Models, Machine Learning in Nuclear Physics, Eigenvalue problem.
Keywords [sv]
PINNs (Physics Informed Neural Networks), DEPINNs (Data-Enabled PINNs), Neutronik, Diffusionsekvation, 2-dimensionella och 2-energigruppers neutroniska modeller, Maskininlärning inom kärnfysik, Egenvärdesproblem.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-360612OAI: oai:DiVA.org:kth-360612DiVA, id: diva2:1940840
External cooperation
EDF R&D
Subject / course
Physics
Educational program
Master of Science - Engineering Physics
Supervisors
Examiners
2025-02-272025-02-272025-02-27Bibliographically approved