Development of simulation model and control strategy for torque vectoring
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesisAlternative title
Utveckling av simuleringsmodell och reglerstrategi för moment-vektorisering (Swedish)
Abstract [en]
Simulation models play a crucial role in the comprehensive study of advanced control systems and strategies. These models not only facilitate the assessment of complex systems but also contribute to the sustainability of the development process. This thesis has been done in collaboration with Koenigsegg Automotive AB and aims to develop a detailed vehicle model designed to assess the complex dynamics associated with clutch-based torque vectoring. The model serves to investigate the actuation and control of clutches and to explore the effects of torque vectoring on vehicle performance and stability. Additionally, novel control strategies for clutch actuation in torque vectoring applications have been developed and implemented. The designed system is evaluated by simulating in various scenarios such as, steady-state, transient and real-world scenarios to evaluate the system based on the key performance indicators like yaw rate, side slip, yaw moment, lateral acceleration, torque distribution and vehicle trajectory. Furthermore, the system analysis encompasses phase-plane analysis, with yaw rate and side slip serving as the state variables. The results demonstrate the advantages of clutch-based torque vectoring, particularly in enhancing lateral acceleration and maintaining vehicle control at high speeds when compared to conventional system. The system significantly improves vehicle stability and performance, especially during high-speed cornering, by efficiently managing the torque distribution to the wheels. Phase-plane analysis underscores the importance of torque vectoring in stabilizing the vehicle, highlighting the stability of the system for performance cars, offering improved lateral grip, faster corner exits and enhanced overall control.
Abstract [sv]
Simuleringsmodeller spelar en avgörande roll i omfattande studier av avancerade reglersystem och strategier. Dessa modeller underlättar inte bara utvärderingen av komplexa system utan bidrar också till en hållbar utvecklingsprocess. Detta examensarbete har utförts i samarbete med Koenigsegg Automotive AB och syftar till att utveckla en detaljerad fordonsmodell som är utformad för att undersöka den komplexa dynamiken i samband med kopplingsbaserad moment-vektorisering. Modellen används för att undersöka aktivering och styrning av kopplingar och för att utforska effekterna av moment-vektorisering på fordonets prestanda och stabilitet. Dessutom har nya reglerstrategier för aktivering av kopplingarna i momentvektor-applikationerr utvecklats och implementerats. Det konstruerade systemet utvärderas genom simulering i olika scenarier, t.ex. steady state, transienta och verkliga scenarier baserat på viktiga prestanda indikatorer så som gir vinkelhastighet, sidoslip, girmoment, lateral acceleration, vridmomentfördelning och fordonsbana. Dessutom omfattar systemanalysen fasplansanalys med girvinkelhastighet och sidoslip som tillståndsvariabler. Resultant visar på fördelarna med kopplingsbaserad moment-vektorisering, särskilt när det gäller att förbättra sidoacceleration och bibehålla kontroll vid höga hastigheter. Systemet förbättrar avsevärt fordonets stabilitet och prestanda, särskilt vid kurvtagning i höga hastigheter, genom att effektivt hantera vridmomentfördelningen till hjulen. Fasplansanalysen understryker vikten av moment-vektorisering för att stabilisera fordonet och visar att systemet är stabilt för prestandabilar, med ökat grepp, snabbare kurvtagning och förbättrad total kontroll.
Place, publisher, year, edition, pages
2024.
Series
TRITA-SCI-GRU ; 2024:400
Keywords [en]
Torque Vectoring, Vehicle dynamics, Vehicle lateral control, Lateral desired state, Torque allocation, Control strategy
Keywords [sv]
Torque Vectoring, fordonsdynamik, lateral reglering av fordon, önskat lateraltillstånd, vridmoment-allokering, reglerstrategi
National Category
Vehicle and Aerospace Engineering
Identifiers
URN: urn:nbn:se:kth:diva-360022OAI: oai:DiVA.org:kth-360022DiVA, id: diva2:1937988
External cooperation
Koenigsegg Automotive AB
Subject / course
Vehicle Engineering
Educational program
Master of Science - Vehicle Engineering
Supervisors
Examiners
2025-02-172025-02-172025-02-17Bibliographically approved