Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Road to Safe Automated Driving Systems: A Review of Methods Providing Safety Evidence
Zenseact, Gothenburg, Sweden.ORCID iD: 0000-0001-9020-6501
Zenseact, Gothenburg, Sweden.ORCID iD: 0000-0002-8218-6915
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0002-4300-885X
2025 (English)In: IEEE Transactions on Intelligent Transportation Systems, ISSN 1524-9050, E-ISSN 1558-0016, Vol. 26, no 4, p. 4315-4345Article in journal (Refereed) Published
Abstract [en]

In recent years, enormous investments in Automated Driving Systems (ADSs) have distinctly advanced ADS technologies. Despite promises made by several high profile auto-makers, it has however become clear that the challenges involved for deploying ADS have been drastically underestimated. Contrary to previous generations of automotive systems, common design, development, verification and validation methods for safety critical systems do not suffice to cope with the increased complexity and operational uncertainties of an ADS. Therefore, the aim of this paper is to provide an understanding of existing methods for providing safety evidence and, most importantly, identifying the associated challenges and gaps pertaining to the use of each method. To this end, we have performed a literature review, articulated around four categories of methods: design techniques, verification and validation methods, run-time risk assessment, and run-time (self-)adaptation. We have identified and present eight challenges, collectively distinguishing ADSs from safety critical systems in general, and discuss the reviewed methods in the light of these eight challenges. For all reviewed methods, the uncertainties of the operational environment and the allocation of responsibility for the driving task on the ADS stand-out as the most difficult challenges to address. Finally, a set of research gaps is identified, and grouped into five major themes: (i) completeness of provided safety evidence, (ii) improvements and analysis needs, (iii) safe collection of closed loop data and accounting for tactical responsibility on the part of the ADS, (iv) integration of AI/ML-based components, and (v) scalability of the approaches with respect to the complexity of the ADS.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2025. Vol. 26, no 4, p. 4315-4345
Keywords [en]
Automated driving system, safety, safety assurance, safety evidence, research gaps
National Category
Robotics and automation
Research subject
Transport Science, Transport Systems
Identifiers
URN: urn:nbn:se:kth:diva-359809DOI: 10.1109/tits.2025.3532684ISI: 001411855700001Scopus ID: 2-s2.0-105001563064OAI: oai:DiVA.org:kth-359809DiVA, id: diva2:1936879
Funder
Knut and Alice Wallenberg FoundationWallenberg AI, Autonomous Systems and Software Program (WASP)Vinnova, 2020-02946Vinnova, TECoSA
Note

QC 20250214

Available from: 2025-02-12 Created: 2025-02-12 Last updated: 2025-04-09Bibliographically approved
In thesis
1. Efficient Strategies for Safety Assurance of Automated Driving Systems
Open this publication in new window or tab >>Efficient Strategies for Safety Assurance of Automated Driving Systems
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

By relieving the human driver of the responsibility of safely operating the vehicle, Automated Driving Systems (ADSs) (colloquially known as self-driving cars) can free up time and possibly also reduce the number of road accidents. Paradoxically, even though safety is one of the main expectations of ADSs, it is also one of the major challenges and arguably one of the key reasons why we have yet to see widespread market deployment of such systems. Contrary to previous generations of automotive systems, common development and safety assurance practises no longer suffice to accommodate the increased system complexity and operational uncertainty inherent to an ADS. Indeed, concrete models and means to show safety fulfilment before deployment remain elusive. For that purpose, this thesis focuses on efficient strategies for safety assurance of ADSs and explores this from three angles. 

Firstly, a comprehensive review of the state of the art has been conducted to identify and structure available methods for providing (predictive) evidence of the safety of the ADS, and to identify gaps and directions where further research is needed.

Secondly, the task of ensuring completeness of both the Verification and Validation (V&V) as well as the safety requirements of the ADS has been explored. The appropriate definition, formalisation and management of an Operational Design Domain (ODD) provide a means to ensure alignment between specification, testing and operations of the ADS – suggesting one way of closing the completeness gap for the V&V. Furthermore, to address the exhaustiveness of the safety requirements, this thesis proposes the use of a Quantitative Risk Norm (QRN) to elicit quantitative vehicle-level requirements. A QRN facilitates this exhaustiveness by considering frequencies of loss events (e.g. accidents) rather than requiring an enumeration of all possible hazards pertaining to the ADS.

Thirdly, this thesis extends the concept of Precautionary Safety (PcS) proposing a methodology for connecting the quantitative safety requirements of the QRN and the runtime decisions of the ADS. This is enabled by augmenting the ADS’s situation awareness (SAW) with an understanding of its own ability to avoid different loss events. Using this enhanced SAW model and by subsequently accounting for the uncertainties of the loss event probabilities, enables an assessment of the QRN even when there is limited data available. Consequently, the proposed methodology can ensure that the ADS indeed only takes decisions that are known to fulfil the QRN.

Jointly, the work presented in this thesis paves a way for how to bridge quantitative safety requirements and runtime decision-making of the ADS, and a possible strategy for efficient safety assurance of ADSs is outlined – drawing upon the contributions of the appended papers. There are still several open questions to understand the implications of this approach but the work showcased herein provides a solid foundation for such future work.

 

 

 

Abstract [sv]

Automatiserade förarsystem (ADSer) (även kallade självkörande bilar) kan frigöra tid och möjligen även minska antalet olyckor i traffiken, genom att avlösa den mänskliga föraren från ansvaret för att köra säkert. Även om säkerhet (safety, security är inte inkluderat i denna avhandling) är en av de största förväntningarna på ADSer, så är det paradoxalt nog även en av de största utmaningarna. Kanske till och med en av huvudanledningarna till att vi ännu inte har sett någon bred lansering av denna typ av system på våra vägar. Metoder för utveckling och säkerhetsbevisning som använts för tidigare generationers system inom bilindustrin är inte längre tillräckliga för att hantera den ökade systemkomplexiteten och de osäkerhetsfaktorer som kännetecknar en ADS. Trots framsteg saknas accepterade, konkreta modeller och metoder för att framställa säkerhetsbevis innan ADSen lanseras på publika vägar. Som en del i att råda bot på detta fokuserar denna avhandling på strategier för säkerhetsbevisning av ADSer och utforskar detta område ur tre vinklar. 

För det första, har en omfattande litteraturestudie genomförts för att identifiera och strukturera befintliga metoder som bidrar till säkerhetsbevisningen för ADSer. I det arbetet identifierades också kvarstående forskningsluckor, som kräver ytterligare forskning.

För det andra, har komplettheten av både verifikationen och valideringen (V&V) samt säkerhetskraven på ADSen utforskats. Genom att bidra med en tillräcklig definition, formalisering och hantering av en Operational Design Domain (ODD) kan det verktyget stötta både specifikationen och testningen av systemet samt när det väl är i funktion (i runtime). ODDen ger således en potentiell väg framåt för att säkerställa komplettheten av V&V processerna och fyra konkreta strategier för att undvika att lämna ODDen presenteras. Vidare, så har en Kvantitativ Risk Norm (QRN) föreslagits för att förenkla arbetet med att uppnå kompletthet av säkerhetskraven på ADSen. Detta genom att kräva uppfyllnad av kvantitativa krav på antalet incidenter istället för att kräva en uppräkning av alla potentiella risker (hazards).

För det tredje, har konceptet med försiktig säkerhet (Precautionary safety) (PcS) vidare-utvecklats för att ge en konkret koppling mellan uppfyllnaden av en QRN och de beslut ADSen tar i runtime. Detta möjliggörs genom att utöka ADSens medvetenhet (situation awareness, SAW) om sin omgivning med en förståelse för det egna systemets förmåga att undvika olika incidenter. Trots begränsad tillgång till data möjliggör denna metod att ta fram en säker körpolicy som uppfyller QRNen genom att hantera de olika osäkerheterna i modellerna som underbygger PcS konceptet. Denna hantering gör det även möjligt att ADSen bara tar beslut som den vet kommer uppfylla QRNen.

Dessa tre områden utgör en möjlig väg framåt för en effektiv (efficient inte bara effektiv) strategi för säkerhetsbevisning för ADSer. Det finns visserligen mycket jobb kvar att göra för att förstå alla implikationer av denna strategi, men det arbete som läggs fram i denna avhandling ger en bra bas att stå på inför en fortsatt utforskning av denna eller ytterligare strategier för effektiv säkerhetsbevisning av ADSer.

Place, publisher, year, edition, pages
Universitetsservice US-AB, 2025. p. 267
Series
TRITA-ITM-AVL ; 2025:3
Keywords
Automated Driving, Safety, Precautionary Safety, Quantitative Safety, Safety Assurance
National Category
Reliability and Maintenance
Identifiers
urn:nbn:se:kth:diva-359967 (URN)978-91-8106-176-5 (ISBN)
Public defence
2025-03-12, https://kth-se.zoom.us/j/66985007478, F3, Lindstedtsvägen 26-28, Stockholm, 13:15 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Available from: 2025-02-17 Created: 2025-02-14 Last updated: 2025-02-25Bibliographically approved

Open Access in DiVA

Gyllenhammar et al (2025) - The Road to Safe ADSs(2270 kB)60 downloads
File information
File name FULLTEXT01.pdfFile size 2270 kBChecksum SHA-512
ea5b5ba54dbca250d2598ca7c0957c33564b4a8f3574230f1a96c285381da6e2e17cad7b9a2b44297ffb47a2faa99840c46ee37cc341588513c85fca51662f01
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gyllenhammar, Magnusde Campos, Gabriel RodriguesTörngren, Martin
By organisation
Mechatronics and Embedded Control Systems
In the same journal
IEEE Transactions on Intelligent Transportation Systems
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 60 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 567 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf