Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward systematic finite element reconstructions of accidents involving vulnerable road users
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering.ORCID iD: 0000-0003-2357-3795
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering.ORCID iD: 0000-0003-1104-2751
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering.ORCID iD: 0009-0008-8497-0122
China In-Depth Accident Study (CIDAS).
Show others and affiliations
2025 (English)In: Traffic Injury Prevention, ISSN 1538-9588, E-ISSN 1538-957XArticle in journal (Refereed) Epub ahead of print
Abstract [en]

To combat the global fatality rates among vulnerable road users (VRUs), prioritizing research on head injury mechanisms and human tolerance levels in vehicle-to-VRU traffic collisions is imperative. A foundational step for VRU injury prevention is often to create virtual reconstructions of real-world collisions. Thus, efficient and trustworthy reconstruction tools are needed to make use of recent advances in accident data collection routines and Finite Element (FE) human body modeling. In this study, a comprehensive and streamlined reconstruction methodology, starting from a video-recorded accident, has been developed. The workflow, that includes state-of-the-art tools for personalization of human body models (HBMs) and vehicles, was evaluated and demonstrated through 20 real-world VRU collision cases. The FE models successfully replicated the vehicle damage that was observed in on-scene photographs of the post-impact vehicle, as well as impact kinematics captured in dash cam or surveillance recordings. The findings highlight how video evidence can considerably narrow down the number of plausible impact scenarios and raise the credibility of virtual reconstructions of real-world VRU collision events. More importantly, this study demonstrates how, with an efficient and systematic methodology, FE might be feasible also for large-scale VRU accident datasets.

Place, publisher, year, edition, pages
Informa UK Limited , 2025.
National Category
Applied Mechanics
Research subject
Technology and Health; Applied and Computational Mathematics, Numerical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-359625DOI: 10.1080/15389588.2024.2449257ISI: 001411806100001Scopus ID: 2-s2.0-85216745142OAI: oai:DiVA.org:kth-359625DiVA, id: diva2:1935124
Funder
Vinnova, 2019-03386Swedish Research Council, 2020-04724Swedish Research Council, 2020-04496Available from: 2025-02-06 Created: 2025-02-06 Last updated: 2025-04-25Bibliographically approved
In thesis
1. From Impact to Insight: Finite Element Modeling of Real-World Head Trauma
Open this publication in new window or tab >>From Impact to Insight: Finite Element Modeling of Real-World Head Trauma
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Traumatic head injuries represent a major global health burden, affecting up to 70 million people annually world-wide. To study head injury mechanisms and evaluate preventive measures, virtual, anatomically-detailed human surrogates, referred to as Human Body Models (HBMs), can be created using Finite Element (FE) modeling techniques. Such FE models can be used to computationally recreate real-world head traumas to study human response to impact and reveal injury mechanisms. However, since FE is an inherently heavy computational task, there are numerous modeling challenges associated with using FE analysis for this purpose: constitutive models need to be appointed to complex biological tissues, models need to be properly validated, the chosen approach should be feasible in terms of time, and so forth. This doctoral thesis aims to address a few of these difficulties.

This thesis is composed of four comprehensive studies, each related to the overall objective of developing new methodologies and models, and further developing existing ones, for in-depth FE reconstructions of real-world head trauma. To emphasize their applicability in head injury research, the four studies also feature in-depth reconstructions of real-world injurious events. In the first study, a male and female pedestrian HBM was developed based on an existing occupant HBM, along with an efficient framework for anthropometric personalization. In the second study, a framework for reconstructing head traumas of pedestrians and cyclists in real-world road traffic accidents was developed, validated and exemplified by reconstructing 20 real-world cases. In the third study, a material model for cranial bone was developed and validated, and used for predicting skull fractures in five fall accidents. Lastly, in the fourth study, the material model was applied to a subject-specific head model, used to conduct an in-depth reconstruction of a workplace fatality to assess the protective effect of construction helmets.

Together, these four studies highlight how in-depth FE reconstructions, involving geometrically personalized models of the human body, can provide head injury predictions with striking resemblance to real-world data. When conducted with care, such reconstructions can offer valuable insights into the complex dynamics of head trauma. They can be indispensable tools for evaluating injury prevention strategies, and can potentially be useful within the field of forensic medicine, as they may help open up for objectification of forensic evaluations.

Abstract [sv]

Traumatiska huvudskador utgör en stor folkhälsoutmaning, med en årlig förekomst som uppskattas till uppemot 70 miljoner fall världen över. För att studera mekanismerna bakom huvudskador kan virtuella, anatomiskt detaljerade mänskliga surrogatmodeller, eller humanmodeller (eng: Human Body Model, HBM), skapas med hjälp av Finita Element (FE) metoden. Sådana FE-modeller kan användas för att rekonstruera huvudtrauman från verkliga olycksfall numeriskt, för att i sin tur synliggöra skademekanismer bakom skall- och hjärnskador. Det finns dessvärre många utmaningar med att använda FE-analys för detta ändamål: materialmodeller måste formuleras för komplexa biologiska vävnader, FE modeller bör valideras, tillvägagångssättet bör vara tidseffektivt och så vidare. Denna doktorsavhandling ämnar ta itu med några av dessa svårigheter.

Avhandlingen består av fyra delstudier, som alla förhåller sig till det övergripande målet att utveckla nya metoder och modeller, samt vidareutveckla  befintliga, för FE-rekonstruktioner av verkliga huvudtrauman. För att belysa deras tillämpning i huvudskadeforskning, behandlar de fyra studierna även rekonstruktioner av verkliga olycksfall. I den första studien utvecklades en manlig och kvinnlig fotgängar-HBM baserat på en befintlig passagerar-HBM, tillsammans med ett effektivt verktyg för att rätta till en HBMs antropometri. I den andra studien utvecklades en metodologi för att rekonstruera huvudtrauman i trafikolyckor (gångtrafikanter eller cyklister). Metodologin validerades genom att rekonstruera 20 verkliga olyckor. I den tredje studien utvecklades och validerades en materialmodell för mänskligt skallben, som senare användes för att prediktera skallfrakturer i fem verkliga fallolyckor. Materialmodellen applicerades på en individanpassad huvudmodell, som också användes i den fjärde studien, där en rekonstruktion av en arbetsplatsolycka genomfördes för att utvärdera skyddshjälmars effektivitet.

Tillsammans belyser dessa fyra studier hur FE-rekonstruktioner, som involverar individanpassade biomekaniska FE-modeller, kan förutsäga huvudskador med slående likhet med verkliga data. När rekonstruktioner genomförs noggrant kan de hjälpa till att åskådliggöra den komplexa dynamiken bakom skall- och hjärnskador. De kan vara oumbärliga verktyg för att utvärdera skadeförebyggande åtgärder och undersöka orsakssamband inom rättsmedicinska sammanhang.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 103
Series
TRITA-CBH-FOU ; 2025:8
Keywords
Finite element human body model, Skull fracture prediction, Accident reconstruction, Head injury prevention, Real-world traffic data, Forensic head trauma analysis, Vulnerable road users, Humanmodell, Prediktering av skallfraktur, Olycksfallsrekonstruktion, Prevention av huvudskador, Rättsmedicinsk bedömning av huvudskada, Oskyddade trafikanter
National Category
Forensic Science Applied Mechanics Solid and Structural Mechanics Medical Modelling and Simulation
Research subject
Technology and Health
Identifiers
urn:nbn:se:kth:diva-362814 (URN)978-91-8106-238-0 (ISBN)
Public defence
2025-05-26, T2 (Jacobssonsalen), Hälsovägen 11C, via Zoom: https://kth-se.zoom.us/j/67595775577, Huddinge, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2025-04-25

Available from: 2025-04-25 Created: 2025-04-25 Last updated: 2025-04-29Bibliographically approved

Open Access in DiVA

fulltext(6919 kB)87 downloads
File information
File name FULLTEXT01.pdfFile size 6919 kBChecksum SHA-512
b61bffb0e1dbea4f516ee2183dfdd02de90fb82ca2d055c568738d66f7410c7d588d79e240b6bad32cd0df062ac06e816a4d4d64c1ee7b43b78578c4ac6050e2
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lindgren, NataliaHuang, QiYuan, QiantailangPipkorn, BengtKleiven, SveinLi, Xiaogai
By organisation
Neuronic Engineering
In the same journal
Traffic Injury Prevention
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 87 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1091 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf