Concomitant fields are the unwanted transverse components that arise when spatial encoding gradients are applied in MRI. We measured the changing gradient magnetic field at multiple locations inside the scanner and examined the internal distribution and linearity of the three vector components of the field. Our results illustrate some not-so-obvious spatial characteristics of the gradient field, which can seem unintuitive at first glance, but are quite reasonable when considering electromagnetic theory and MRI-scanner physics constraints.