Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Lubrication, Tool Steel Composition and Topography on the High Temperature Tribological Behaviour of Aluminium
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.ORCID iD: 0000-0002-6513-3504
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.ORCID iD: 0000-0003-3123-0303
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.ORCID iD: 0000-0003-1454-1118
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.ORCID iD: 0000-0003-1162-4671
2020 (English)In: Friction, E-ISSN 2223-7690Article in journal (Refereed) Accepted
Abstract [en]

The use of high strength aluminium alloys, such as 6XXX and 7XXX series, is continuously increasing for automotive applications in view of their good strength-to-weight ratio. Their formability at room temperature is limited and they are thus often formed at high temperatures to enable production of complex geometries. Critical challenges during hot forming of aluminium are the occurrence of severe adhesion and material transfer onto the forming tools. This negatively affects the tool life and the quality of the produced parts. In general, the main mechanisms involved in the occurrence of material transfer of aluminium alloys at high temperature are still not clearly understood. Therefore, this study is focussed on understanding of the friction and wear behaviour during interaction of Al6016 alloy and three different tool steels in as-received and polished state. The tribotests were carried out under dry and lubricated conditions, with two distinct lubricants, using a reciprocating friction and wear tester. The worn surfaces were analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed a high dependence of friction and wear behaviour on the tool steel roughness as well as on the stability of the lubricant films. Tribolayers were found to develop in the contact zone and their capacity to improve the tribological behaviour is seen to be drastically impacted by the surface roughness of the tool steel. When the tribolayers failed, severe adhesion took place and led to high and unstable friction as well as material transfer to the tool steel.

Place, publisher, year, edition, pages
2020.
Keywords [en]
friction, wear, high temperature tribology, aluminium, lubrication, tribolayer
National Category
Tribology (Interacting Surfaces including Friction, Lubrication and Wear)
Research subject
Machine Elements
Identifiers
URN: urn:nbn:se:ltu:diva-77692OAI: oai:DiVA.org:ltu-77692DiVA, id: diva2:1392886
Available from: 2020-02-13 Created: 2020-02-13 Last updated: 2020-02-17

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Decrozant-Triquenaux, JustinePelcastre, LeonardoPrakash, BrahamHardell, Jens
By organisation
Machine Elements
In the same journal
Friction
Tribology (Interacting Surfaces including Friction, Lubrication and Wear)

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf