Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gyrokinetic study of turbulence suppression in a JET-ILW power scan
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 11112016 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 58, no 11, article id 115005Article in journal (Refereed) Published
Abstract [en]

For exploring tokamak operation regimes that deliver both high beta and good energy confinement, power scans at JET with ITER-like wall have been performed. Relatively weak degradation of the confinement time coincides with increased core temperature of the ions at high power. The changes in core turbulence characteristics during a power scan with an optimized (broad) q profile are analyzed by means of nonlinear gyrokinetic simulations. The increase in beta is crucial for stabilizing ion temperature gradient driven turbulence, accompanied by increased ion to electron temperature ratio, the presence of a dynamic fast ion species, as well as the geometric stabilization by increased thermal and suprathermal pressure. A sensitivity study with respect to the q profile reveals that electromagnetic effects are more pronounced at larger values of q. Further, it is confirmed that turbulence suppression due to rotation becomes less effective in such strongly electromagnetic systems. Electrostatic simplified models may thus perform well in present-day devices, in which high beta is often correlated with high rotation, but provide poor extrapolation towards low rotation devices. Implications for ITER and reactor plasmas are discussed.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2016. Vol. 58, no 11, article id 115005
Keywords [en]
tokamak, gyrokinetic simulation, thermal transport, electromagnetic turbulence
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-400313DOI: 10.1088/0741-3335/58/11/115005ISI: 000385420300002OAI: oai:DiVA.org:uu-400313DiVA, id: diva2:1392500
Funder
EU, FP7, Seventh Framework Programme, 277870
Note

For complete list of authors see http://dx.doi.org/10.1088/0741-3335/58/11/115005

Available from: 2020-02-07 Created: 2020-02-07 Last updated: 2020-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Plasma Physics and Controlled Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf