Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance of a Low-Height Acoustic Screen for Urban Roads: Field Measurement and Numerical Study
Show others and affiliations
Number of Authors: 52019 (English)In: Acta Acoustica united with Acustica, ISSN 1610-1928, E-ISSN 1861-9959, Vol. 105, no 6, p. 1026-1034Article in journal (Refereed) Published
Abstract [en]

Field measurements and numerical modelling were used to study the acoustic performance of a low screen in an urban road setting. The results show the usefulness of low screens as well as suggests improvements in screen design. For the measurements, an acoustic screen built up from concrete modules was temporarily installed beside a small park on the reservation between a two-lane road and a track for walking and cycling. A larger traffic system, of which the two-lane road is a part, determines the daytime equivalent noise level within the urban area. The screen height was about 1.4m as measured from the level of the road surface and the width of the screen top was 0.3 m. Measurements were carried out both at 20 m distance from the road (within the park) and at 5 m distance from the road (at the cycle track). Insertion loss in maximum level, using controlled light-vehicle pass-by at 50 km/h, was measured to 10 dB at 5 m distance and to 6 dB at 20 m distance, at 1.5 m height. Insertion loss in equivalent level was measured within the park to 4 dB at 1.5 m height. A listening experiment confirmed a perceived improvement from installing the screen. The measured results were also compared with predicted results using a boundary element method (BEM) and a noise mapping software, the latter showing good agreement, overestimating the equivalent level insertion loss by 1 dB in the park. The BEM comparison showed reasonable agreement in maximum level insertion loss considering that facade reflections were excluded, with an overestimation of 5 dB at the cycle track, and good agreement in the park, overestimating by up to 1 dB the equivalent and maximum level insertion losses. BEM predictions were used to also investigate other screen designs, showing a positive effect of an acoustically soft screen top, significant for a screen width of 0.2 m and increasing for wider screens.

Place, publisher, year, edition, pages
2019. Vol. 105, no 6, p. 1026-1034
National Category
Physical Sciences Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:su:diva-178577DOI: 10.3813/AAA.919381ISI: 000506577800013OAI: oai:DiVA.org:su-178577DiVA, id: diva2:1391845
Available from: 2020-02-05 Created: 2020-02-05 Last updated: 2020-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Axelsson, Östen
By organisation
Department of Psychology
In the same journal
Acta Acoustica united with Acustica
Physical SciencesElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 156 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf