Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Composition, isotopic fingerprint and source attribution of nitrate deposition from rain and fog at a Sub-Arctic Mountain site in Central Sweden (Mt Åreskutan)
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 62019 (English)In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 71, article id 1559398Article in journal (Refereed) Published
Abstract [en]

While dry and rain deposition of nitrate (NO3-) and ammonium (NH4+) are regularly assessed, fog deposition is often overlooked. This work assesses summer fog events contribution to nitrogen deposition and availability for forest ecosystems. Rain and fog samples were collected at Mt Areskutan, Sweden, during CAEsAR (Cloud and Aerosol Characterization Experiment), in 2014. NH4+ + NO3- represent (31 +/- 25) % of total rain ion amount, and (31 +/- 42) % in fog. Based on ion concentrations and the nitrate stable isotope signatures delta(N-15) and delta(O-18), it was possible to detect the plume generated by the Vastmanland forest fire; NOx emissions from oil rigs and Kola Peninsula; and the plume of Bardarbunga volcano, Iceland. Scavenging of ions by fog was more efficient than by rain. Rain NH4+ and NO3- deposition was (26 +/- 36) mu mol m(-2) d(-1) and (23 +/- 27) mu mol m(-2) d(-1), respectively. Fog NH4+ and NO3- contributed (77 +/- 80) % to total wet deposition of these species. Upscaling rain deposition fluxes to 1 year gave an inorganic nitrogen deposition of (18 +/- 16) mmol m(-2) a(-1) ((252 +/- 224) mg m(-2) a(-1) N equivalents), whereas fog deposition was estimated as (59 +/- 47) mmol m(-2) a(-1) ((826 +/- 658) mg m(-2) a(-1) N equivalents). Annual fog deposition was four times higher than previously reported for the area which only considered rain deposition. However, great uncertainty on the calculation of fog deposition need to be bear in mind. These findings suggest that fog should be considered in deposition estimates of inorganic nitrogen and major ions. If fog deposition is not accounted for, ion wet deposition may be greatly underestimated. Further sampling of wet and dry deposition is important for understanding the influence of nitrogen deposition on forest and vegetation development, as well as soil major ion loads.

Place, publisher, year, edition, pages
2019. Vol. 71, article id 1559398
Keywords [en]
aerosol, cloudwater, nitrogen isotopes, reactive nitrogen, source analysis
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-178594DOI: 10.1080/16000889.2018.1559398ISI: 000505168500001OAI: oai:DiVA.org:su-178594DiVA, id: diva2:1391684
Available from: 2020-02-05 Created: 2020-02-05 Last updated: 2020-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Wideqvist, UllaZieger, PaulStröm, Johan
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Tellus. Series B, Chemical and physical meteorology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf