Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In-situ studies of oxidation/reduction of copper in Cu-CHA SCR catalysts:comparison of fresh and SO2-poisoned catalysts
Show others and affiliations
(English)In: Article in journal (Other academic) Accepted
Abstract [en]

SO2-poisoning results in deactivation of Cu-CHA SCR under standard SCR conditions; however regeneration at 700 ◦C completely restores the SCR performance. To understand the nature of these effects, Cu-species in the fresh and poisoned catalystswere characterized by in-situ temperature-dependent time-resolved Cu K-edge X-ray absorption spectroscopy using the multivariate curve resolution alternating least squares (MCR-ALS) approach and continuous Cauchy wavelet transforms. The extracted chemically-meaningful reference spectra of Cu-species were analyzed by DFT-assisted XANES calculations. Cu-bisulfates werefound as the most energetically favorable poisoned Cu-species. The response of Cu-species to a reducing environment differs inthe fresh and SO2-poisoned catalysts. Differences in reducibility are related to the formation of quasi-linear Cu-complexes in the SO2-poisoned catalyst formed during heating in H2/He. Heating in H2/He leads to partial desulfurization of the poisoned catalyst. Cooling in H2/He after heating results in more facile formation of Cu-metal clusters in fresh catalyst than in SO2-poisoned.

National Category
Chemical Process Engineering Materials Chemistry Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-267205OAI: oai:DiVA.org:kth-267205DiVA, id: diva2:1391251
Available from: 2020-02-04 Created: 2020-02-04 Last updated: 2020-02-04
In thesis
1. Deactivation of emission control catalysts for heavy-duty vehicles: Impact of biofuel and lube oil-derived contaminants
Open this publication in new window or tab >>Deactivation of emission control catalysts for heavy-duty vehicles: Impact of biofuel and lube oil-derived contaminants
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Catalytic emission control is used to reduce the negative impact of pollutants from diesel exhausts on our health and on the environment. For a heavy-duty truck, such a system consists of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), a selective catalytic reduction (SCR) catalyst, and an ammonia slip catalyst (ASC). Due to greenhouse-gas induced global warming, it is necessary to decrease the emissions of such gases. Two strategies for this reduction are: 1) to produce engines that are more fuel efficient, 2) to use sustainably produced renewable fuels such as biodiesel and HVO. However, both these strategies may pose additional challenges for the emission control system: a colder exhaust due to the higher fuel-efficiency requires the use of highly active catalysts; catalyst deactivation related to impurities in biofuels, which requires very robust catalysts.   The objective of this thesis was to study the impact of biofuel as well as lubrication oil-related contaminants on the performance of emission control catalysts (DOC and SCR catalysts) for heavy-duty diesel engines. The main focus has been on the low-temperature performance of V2O5-WO3/TiO2 (VWTi) and Cu-SSZ-13 SCR catalysts.    Results from the project have shown that both Cu-SSZ-13 and VWTi catalysts capture and can be deactivated by phosphorus (P), while only the Cu-SSZ-13 is deactivated by sulfur (S). The degree of the P-related deactivation depends on the concentration in the catalyst, which depends on content of P in the exhaust and the exposure time, as well as the type of catalyst. S-deactivation of Cu-SSZ-13 is observed at low temperatures, where un-poisoned Cu-SSZ-13 are significantly more active than VWTi catalysts. As a contrast, the VWTi-performance can even be improved by sulfur; but alkali metals are severe poisons to VWTi catalysts. Partial performance-recovery of S-poisoned Cu-SSZ-13 can be obtained by exposing it to sulfur-free exhausts at elevated temperatures. The use of an upstream DOC, providing fast SCR conditions to the SCR catalyst, considerably improves the low-temperature performance of the VWTi, as well as sulfur-poisoned Cu-SSZ-13 catalysts. An upstream DOC also protects the SCR catalysts from phosphorus deactivation, as it can trap large amounts of P. However, if too much phosphorus is captured by the DOC, severe deactivation of this catalyst results, which lowers the overall performance of the exhaust treatment system.  Insights from this project will guide the development of robust exhaust treatment systems for various applications. Additionally, it could aid in developing more durable emission control catalysts.

Abstract [sv]

Katalytisk avgasrening används för att minska de negativa hälso- och miljöeffekterna av dieselavgaser. För tunga lastbilar består detta avgasreningssystem av flera komponenter, dieseloxidationskatalysator (DOC), partikelfilter, SCR-katalysator och ammoniaköverskottskatalysator. I och med de klimatnegativa effekterna av växthusgaser, inkl. koldioxid, måste även emissionerna av dessa från tunga fordon minska. Två sätt att uppnå detta är att 1) producera mer bränsleeffektiva motorer, 2) använda förnybara bränslen såsom biodiesel och hydrerad växtolja (HVO). Båda dessa strategier kan dock medföra tuffa utmaningar för efterbehandlingssystemet – kallare avgaser respektive katalysatordeaktivering relaterad till kontamineringsämnen i biobränslena. Detta kräver att katalysatorerna är både aktiva och tåliga.  Syftet med detta doktorandprojekt har varit att studera effekten av biobränsle- och motoroljerelaterade kontamineringsämnens påverkan på avgasreningskatalysatorer för tunga dieselmotorer.  Huvudfokuset har varit påverkan på lågtemperaturegenskaperna hos två olika typer av SCR-katalysatorer, V2O5-WO3/TiO2 (VWTi) och Cu-SSZ. Resultat från projektet har visat att fosfor kan ackumuleras i både VWTi och Cu-SSZ-13 och deaktivera dessa, medan svavel endast deaktiverar Cu-SSZ-13. Denna deaktivering syns vid låga temperaturer där Cu-SSZ-13 annars har en betydligt bättre prestanda än VWTi. Prestandan för svavelförgiftad Cu-zeolit kan delvis fås tillbaka genom att öka temperaturen i avgaserna i svavelfri miljö. Närvaro av ammoniak i avgasen underlättar regenereringen. VWTi-katalysatorn är däremot inte känslig för svavel utan får snarare en något förbättrad prestanda. Däremot är alkalimetaller ett starkt gift för VWTi.  En uppströms DOC kan väsentligt förbättra lågtemperaturprestandan för VWTi och för svavelförgiftad Cu-SSZ-13 genom att förse dessa med NO2 så att snabb SCR kan uppnås. DOCn kan också skydda SCR-katalysatorer från fosforförgiftning genom att själv fånga upp fosfor. För mycket fosfor på DOCn resulterar dock i förgiftning även av denna, vilket påverkar resten av avgasbehandlingssystemet negativt. Resultaten från detta projekt kan användas för att utveckla robusta avgasbehandlingssystem för olika typer av tillämpningar, och kan bidra till utvecklandet av mer tåliga katalysatorer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 121
Series
TRITA-CBH-FOU ; 2020:10
Keywords
NH3-SCR, Cu-SSZ-13, V2O5-WO3/TiO2, catalyst deactivation, diesel oxidation catalyst, sulfur, phosphorus, biodiesel, heavy-duty, emission control, regeneration, alkali metals, NH3-SCR, Cu-SSZ-13, V2O5-WO3/TiO2, katalysatordeaktivering, dieseloxidationskatalysator, svavel, fosfor, biodiesel, tunga dieselmotorer, avgasrening, regenerering, alkalimetaller
National Category
Chemical Process Engineering Other Chemistry Topics Materials Chemistry
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-267206 (URN)978-91-7873-437-5 (ISBN)
Public defence
2020-02-28, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-02-04

Available from: 2020-02-04 Created: 2020-02-04 Last updated: 2020-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Dahlin, Sandra
Chemical Process EngineeringMaterials ChemistryOther Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf