Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation-Based Portfolio Optimization with Coherent Distortion Risk Measures
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2020 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Simuleringsbaserad portföljoptimering med koherenta distortionsriskmått (Swedish)
Abstract [en]

This master's thesis studies portfolio optimization using linear programming algorithms. The contribution of this thesis is an extension of the convex framework for portfolio optimization with Conditional Value-at-Risk, introduced by Rockafeller and Uryasev. The extended framework considers risk measures in this thesis belonging to the intersecting classes of coherent risk measures and distortion risk measures, which are known as coherent distortion risk measures. The considered risk measures belonging to this class are the Conditional Value-at-Risk, the Wang Transform, the Block Maxima and the Dual Block Maxima measures. The extended portfolio optimization framework is applied to a reference portfolio consisting of stocks, options and a bond index. All assets are from the Swedish market. The returns of the assets in the reference portfolio are modelled with elliptical distribution and normal copulas with asymmetric marginal return distributions.

The portfolio optimization framework is a simulation-based framework that measures the risk using the simulated scenarios from the assumed portfolio distribution model. To model the return data with asymmetric distributions, the tails of the marginal distributions are fitted with generalized Pareto distributions, and the dependence structure between the assets are captured using a normal copula. The result obtained from the optimizations is compared to different distributional return assumptions of the portfolio and the four risk measures. A Markowitz solution to the problem is computed using the mean average deviation as the risk measure. The solution is the benchmark solution which optimal solutions using the coherent distortion risk measures are compared to.

The coherent distortion risk measures have the tractable property of being able to assign user-defined weights to different parts of the loss distribution and hence value increasing loss severities as greater risks. The user-defined loss weighting property and the asymmetric return distribution models are used to find optimal portfolios that account for extreme losses. An important finding of this project is that optimal solutions for asset returns simulated from asymmetric distributions are associated with greater risks, which is a consequence of more accurate modelling of distribution tails. Furthermore, weighting larger losses with increasingly larger weights show that the portfolio risk is greater, and a safer position is taken.

Abstract [sv]

Denna masteruppsats behandlar portföljoptimering med linjära programmeringsalgoritmer. Bidraget av uppsatsen är en utvidgning av det konvexa ramverket för portföljoptimering med Conditional Value-at-Risk, som introducerades av Rockafeller och Uryasev. Det utvidgade ramverket behandlar riskmått som tillhör en sammansättning av den koherenta riskmåttklassen och distortions riksmåttklassen. Denna klass benämns som koherenta distortionsriskmått. De riskmått som tillhör denna klass och behandlas i uppsatsen och är Conditional Value-at-Risk, Wang Transformen, Block Maxima och Dual Block Maxima måtten. Det utvidgade portföljoptimeringsramverket appliceras på en referensportfölj bestående av aktier, optioner och ett obligationsindex från den Svenska aktiemarknaden. Tillgångarnas avkastningar, i referens portföljen, modelleras med både elliptiska fördelningar och normal-copula med asymmetriska marginalfördelningar.

Portföljoptimeringsramverket är ett simuleringsbaserat ramverk som mäter risk baserat på scenarion simulerade från fördelningsmodellen som antagits för portföljen. För att modellera tillgångarnas avkastningar med asymmetriska fördelningar modelleras marginalfördelningarnas svansar med generaliserade Paretofördelningar och en normal-copula modellerar det ömsesidiga beroendet mellan tillgångarna. Resultatet av portföljoptimeringarna jämförs sinsemellan för de olika portföljernas avkastningsantaganden och de fyra riskmåtten. Problemet löses även med Markowitz optimering där "mean average deviation" används som riskmått. Denna lösning kommer vara den "benchmarklösning" som kommer jämföras mot de optimala lösningarna vilka beräknas i optimeringen med de koherenta distortionsriskmåtten.

Den speciella egenskapen hos de koherenta distortionsriskmåtten som gör det möjligt att ange användarspecificerade vikter vid olika delar av förlustfördelningen och kan därför värdera mer extrema förluster som större risker. Den användardefinerade viktningsegenskapen hos riskmåtten studeras i kombination med den asymmetriska fördelningsmodellen för att utforska portföljer som tar extrema förluster i beaktande. En viktig upptäckt är att optimala lösningar till avkastningar som är modellerade med asymmetriska fördelningar är associerade med ökad risk, vilket är en konsekvens av mer exakt modellering av tillgångarnas fördelningssvansar. En annan upptäckt är, om större vikter läggs på högre förluster så ökar portföljrisken och en säkrare portföljstrategi antas. 

Place, publisher, year, edition, pages
2020.
Series
TRITA-SCI-GRU ; 2020:005
Keywords [en]
Risk Management, Portfolio Optimization, Conditional Value-at-Risk, Coherent Distortion Riks Measures, Elliptical Distribution, GARCH model, Normal Copulas, Extreme Value Theory, Risk Contributions
Keywords [sv]
Riskhantering, Portföljoptimering, Conditional Value-at-Risk, Koherenta distortionsriskmått, Elliptiska fördelningar, GARCH modeller, Normal-copula, Extremvärdes teori, Riskbidrag
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-266382OAI: oai:DiVA.org:kth-266382DiVA, id: diva2:1385204
External cooperation
SAS Institute
Subject / course
Financial Mathematics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2020-01-13 Created: 2020-01-13 Last updated: 2020-01-17Bibliographically approved

Open Access in DiVA

fulltext(12169 kB)13 downloads
File information
File name FULLTEXT02.pdfFile size 12169 kBChecksum SHA-512
d687c97ccc003be4e4618d8dbeb4ba3f07668df1169ddc87135e7911a11b0a764b8ae96c35f0c65342a2c147c4bd03110dd86390a19159a3f029a3ea8ac2e889
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf