Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chassis predictive maintenance and service solutions
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Predictive Maintenance (PdM) accumulates data from multiple sensors developing a statistical model which identifies the key failures even before they take place. The main focus of this thesis work has been the proposal of a machine learning based system designed for predicting the failure of mechanical parts that require replacement. The main investigation explores the possibilities of implementing machine learning algorithm for predicting the parts that require replacement and which is found from the electronic errors that the vehicle exhibits. A strong association between the parts that cause faults and electronic error codes helps in yielding a powerful diagnostics tool. The study has considered three error components namely; broken damper, noisy wheel hub and the reference value for the validation purpose. The model vehicle used for the study is Volvo V90. To acquire variance in this study data, diverse tracks with different speeds were used. The machine learning algorithm that was developed can classify and detect mechanical failures using an Support Vector Machine (SVM) algorithm based on various statistical learning methods. The study carried out an fast Fourier transform (FFT) analysis in association with the data acquired from front left wheel. The main area of interest is the FFT domain of 5-20hz. The study outcome indicated that the used model is capable of predicting the hysteretic responses associated with the faulty components like broken damper and noisy wheel hub. The designed model can be used for analysing the system’s response and for designing and controlling the faulty components in the car. However, the results of this thesis work can be used to implement the time-based prediction of mechanical component decay.

Abstract [sv]

Prediktivt Underhåll (PdM) är en statistisk modell som samlar data från flera olika sensorer och som identifierar fel innan de äger rum. Huvudfokus för detta examensarbete har varit förslaget till ett maskininlärningsbaserat system som är utformat för att förutsäga fel i mekaniska delar som kräver utbyte. Examensarbetet undersöker möjligheterna att implementera en maskininlärningsalgoritm för att förutsäga de mekaniska delar som kräver utbyte och som framgår av de elektroniska fel som fordonet uppvisar. En stark koppling mellan de delar som orsakar fel och elektroniska felkoder hjälper till att ge ett kraftfullt diagnostiskt verktyg. Studien har beaktat tre felkomponenter nämligen; trasig dämpare, missljud från hjulnav och referensvärdet för valideringsändamål. Modellfordonet som används för studien är Volvo V90. För att få varians i informationen för detta arbete användes olika provbanor med olika vägförhållanden med olika hastigheter. Maskininlärningsalgoritmen som utvecklades kan klassificera och upptäcka mekaniska fel med hjälp av en SVM-algoritm (Support Vector Machine) baserad på olika statistiska inlärningsmetoder. Studien genomförde en snabb Fourier-transform (FFT) analys i samband med de data som förvärvades från det främre vänstra hjulet. Huvudintresseområdet är FFT-domänen 5-20 Hz. Studiens resultat visade att den använda modellen kan: Identifiera och klassificera data som är förknippade med de felaktiga komponenterna som trasig dämpare och missljud i hjulnav. Modellen kan användas för vidare prediktera och ge förslag när ett mekaniskt fel på dämpare eller hjulnav håller på att ske. Det här examensarbetet täcker inte tidsbunden prediktion utan snarare identifierar när nedbrytningen av mekaniska komponenter har skett. Resultaten från detta examensarbete kan emellertid användas för att implementera en tidsbaserad prediktion för mekaniska komponentfel.

Place, publisher, year, edition, pages
2019. , p. 69
Series
TRITA-SCI-GRU ; 2019:365
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-265587OAI: oai:DiVA.org:kth-265587DiVA, id: diva2:1379746
External cooperation
Volvo Cars
Examiners
Available from: 2019-12-17 Created: 2019-12-17 Last updated: 2019-12-17Bibliographically approved

Open Access in DiVA

fulltext(4678 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 4678 kBChecksum SHA-512
48a4b09275fb78a7dd5f36a11bb8fc71dc07bad99a9173a2f4324900a44d0fdc9a321bdabe1716be64efcba56923ea5f5c4278c972d5b605d42c1afac8e866c2
Type fulltextMimetype application/pdf

By organisation
Vehicle Dynamics
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf