Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using Machine Learning to Predict Employee Resignation in the Swedish Armed Forces
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Since the Swedish government reinstated conscription in 2017, the Swedish Armed Forces are once again able to meet the wartime staffing requirements. In addition to the increase in employees the Swedish Armed Forces have been able to shift focus from external recruiting to internal human resource management. High employee turnover is a costly affair, especially in an organization like this one, where the initial investments, by way of training, are expensive and arduous. Predicting which employees are about to resign can help retain employees and decrease turnover and in turn save resources. With sufficient data, machine learning can be used to predict which employees are about to resign. This study shows that the machine learning model, random forest, can increase accuracy and precision of predictions, and points to variables and behavioral indicators that have been found to have a strong correlation to employee resignation.

Abstract [sv]

Detta arbete utforskar möjligheten att använda maskininlärning, mer specifikt modellen random forest, för att förutspå uppsägning av anställda i Försvarsmakten. Arbetet stammar ur återinförandet av värnplikten i 2017, som följd av att enbart ca. 60% av bemanningskravet i krigstid med den frivilliga modellen kunde mötas. Arbetet finner att maskininlärningsmodellen random forest, kan användas för att förutspå uppsägningar till en icke-trivial grad. Random forestmodellen kan användas till att förutspå uppsägningar till 89% noggrannhet och 72% precision. Den största källan till osäkerhet i studien är mängden och egenskaperna hos datan. Studien är baserad på data från 1500 heltidsanställda gruppchefer, soldater och sjömän (GSS-K). För att förbättra resultatet och i synnerhet precisionen behövs mer data och data med en starkare korrelation till beteende. För framtida studier rekommenderas att utforska huruvida andra maskininlärningsmodeller är lämpade för just denna verksamhet, men även hur arbete, insamling och förvaltning av data inom Försvarsmakten kan utvecklas.

Place, publisher, year, edition, pages
2019. , p. 13
Series
TRITA-EECS-EX ; 2019:671
Keywords [en]
conscription, machine learning, employee turnover, employee retention, random forest, Swedish Armed Forces
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-265013OAI: oai:DiVA.org:kth-265013DiVA, id: diva2:1376923
Examiners
Available from: 2020-01-29 Created: 2019-12-10 Last updated: 2020-01-29Bibliographically approved

Open Access in DiVA

fulltext(717 kB)90 downloads
File information
File name FULLTEXT01.pdfFile size 717 kBChecksum SHA-512
2ee8e8145f8fa1555018038ef9629f23f355139f2c94c4e2cd1b2d3ff3f026214db72aa58ff51664845eacca7d4076ab91154f2106e1710f470baea38bd52f8e
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 90 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 64 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf