Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Beryllium global erosion and deposition at JET-ILW simulated with ERO2.0
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 12342019 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 18, p. 331-338Article in journal (Refereed) Published
Abstract [en]

The recently developed Monte-Carlo code ERO2.0 is applied to the modelling of limited and diverted discharges at JET with the ITER-like wall (ILW). The global beryllium (Be) erosion and deposition is simulated and compared to experimental results from passive spectroscopy. For the limiter configuration, it is demonstrated that Be self-sputtering is an important contributor (at least 35%) to the Be erosion. Taking this contribution into account, the ERO2.0 modelling confirms previous evidence that high deuterium (D) surface concentrations of up to similar to 50% atomic fraction provide a reasonable estimate of Be erosion in plasma-wetted areas. For the divertor configuration, it is shown that drifts can have a high impact on the scrape-off layer plasma flows, which in turn affect global Be transport by entrainment and lead to increased migration into the inner divertor. The modelling of the effective erosion yield for different operational phases (ohmic, L- and H-mode) agrees with experimental values within a factor of two, and confirms that the effective erosion yield decreases with increasing heating power and confinement.

Place, publisher, year, edition, pages
2019. Vol. 18, p. 331-338
Keywords [en]
Beryllium, Erosion, ER02.0, JET ITER-like wall
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-398544DOI: 10.1016/j.nme.2019.01.015ISI: 000460107500056OAI: oai:DiVA.org:uu-398544DiVA, id: diva2:1376876
Note

For complete list of authors see http://dx.doi.org/10.1016/j.nme.2019.01.015

Available from: 2019-12-10 Created: 2019-12-10 Last updated: 2019-12-10Bibliographically approved

Open Access in DiVA

fulltext(2678 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 2678 kBChecksum SHA-512
055d6742d10428c89f240454f4708ed4b0b6c9ed982f4c0a9c706eafd59b088024f68c87e92109d0d365c03062cbb4a53573d30a298165fa1aa752199da2dc73
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Materials and Energy
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf