Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potential of harvesting solar neutrinos to power electric cars
KTH, School of Industrial Engineering and Management (ITM).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Imminent penalties for excess emissions force the automotive industry to radically rethink how to power vehicles. Novel concepts are needed to facilitate these changes, which might be found by scouting patents of emerging and established companies. During their patent search, Daimler AG has come across a patent of the startup Neutrino Energy GmbH, which reveals a device designed to harvest solar neutrinos for electricity generation purposes. From here the question arises: Is it possible to harvest solar neutrinos to power electric consumers, such as cars? To answer this question, this study analyzes the solar neutrino flux on Earth’s surface and the state-of-the-art solar neutrino technology (including solar neutrino detectors used in research and the solar neutrino converter proposed by Neutrino Energy GmbH). The energy inherent to the solar neutrino flux is computed based on the solar neutrino spectrum found in literature. Solar neutrino detectors are analyzed on their ability to harvest solar neutrinos by consulting literature and by estimating their power output. In case of the graphene based converter by Neutrino Energy GmbH, the threshold energies of neutrino-graphene interactions are compared to the energies of incoming neutrinos to estimate an upper limit for the power output. Results from the analysis of the solar neutrino flux show that the energy inherent to solar neutrinos is too low to power an electric vehicle, even if it could be fully exploited. In fact, only a tiny fraction of the solar neutrino energy flux can be converted into electricity as neutrinos barely interact with matter. The analysis of the state-of-the-art solar neutrino research shows that detectors with a weight of several tonnes are constructed to capture signals from solar neutrinos. Still, the power output of such detectors is several orders of magnitude lower than the demand of an electric vehicle. Analyzing the concept developed by Neutrino Energy GmbH shows that only a small part of the solar neutrino flux can be harvested, insufficient to generate a significant amount of electricity. Hence, the conclusion is drawn, that solar neutrino conversion technology is no suitable candidate to enable sustainable mobility.

Place, publisher, year, edition, pages
2019. , p. 51
Series
TRITA-ITM-EX ; 2019:639
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-264284OAI: oai:DiVA.org:kth-264284DiVA, id: diva2:1373015
Supervisors
Examiners
Available from: 2019-11-26 Created: 2019-11-26 Last updated: 2019-11-29Bibliographically approved

Open Access in DiVA

fulltext(1420 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 1420 kBChecksum SHA-512
9d8a7b121d20d6b91dd62d456a4011f7b5b47534dfb49e10fb849b74cb64f35bd741d275721a78d80fd2dc5afebb894bb0ea69aebeab0cf39e367f9308c1cbf0
Type fulltextMimetype application/pdf

By organisation
School of Industrial Engineering and Management (ITM)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf