CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt182",{id:"formSmash:upper:j_idt182",widgetVar:"widget_formSmash_upper_j_idt182",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt191_j_idt193",{id:"formSmash:upper:j_idt191:j_idt193",widgetVar:"widget_formSmash_upper_j_idt191_j_idt193",target:"formSmash:upper:j_idt191:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Plemelj-Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operatorsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)In: Mathematische Annalen, ISSN 0025-5831, E-ISSN 1432-1807Article in journal (Refereed) Epub ahead of print
##### Abstract [en]

##### Place, publisher, year, edition, pages

SPRINGER HEIDELBERG.
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-397604DOI: 10.1007/s00208-019-01922-4ISI: 000493751200001OAI: oai:DiVA.org:uu-397604DiVA, id: diva2:1372167
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt732",{id:"formSmash:j_idt732",widgetVar:"widget_formSmash_j_idt732",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt751",{id:"formSmash:j_idt751",widgetVar:"widget_formSmash_j_idt751",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt776",{id:"formSmash:j_idt776",widgetVar:"widget_formSmash_j_idt776",multiple:true}); Available from: 2019-11-22 Created: 2019-11-22 Last updated: 2019-11-22

Let R be a compact Riemann surface and Gamma be a Jordan curve separating R into connected components Sigma(1) and Sigma(2). We consider Calderon-Zygmund type operators T (Sigma(1), Sigma(k)) taking the space of L2 anti-holomorphic one-forms on Sigma(1) to the space of L-2 holomorphic one-forms on Sigma(k) for k = 1, 2, which we call the Schiffer operators. We extend results of Max Schiffer and others, which were confined to analytic Jordan curves Gamma, to general quasicircles, and prove new identities for adjoints of the Schiffer operators. Furthermore, let V be the space of anti-holomorphic one-forms which are orthogonal to L2 anti-holomorphic one-forms on R with respect to the inner product on Gamma. We show that the restriction of the Schiffer operator T (Sigma(1), Sigma(2)) to V is an isomorphism onto the set of exact holomorphic one-forms on Sigma(2). Using the relation between this Schiffer operator and a Cauchy-type integral involving Green's function, we also derive a jump decomposition (on arbitrary Riemann surfaces) for quasicircles and initial data which are boundary values of Dirichlet-bounded harmonic functions and satisfy the classical algebraic constraints. In particular we show that the jump operator is an isomorphism on the subspace determined by these constraints.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1968",{id:"formSmash:j_idt1968",widgetVar:"widget_formSmash_j_idt1968",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2034",{id:"formSmash:lower:j_idt2034",widgetVar:"widget_formSmash_lower_j_idt2034",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2035_j_idt2040",{id:"formSmash:lower:j_idt2035:j_idt2040",widgetVar:"widget_formSmash_lower_j_idt2035_j_idt2040",target:"formSmash:lower:j_idt2035:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});