Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Optimal Hardware Architecture for High Precision 3D Localization on the Edge.: A Study of Robot Guidance for Automated Bolt Tightening.
KTH, School of Industrial Engineering and Management (ITM).
KTH, School of Industrial Engineering and Management (ITM).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Den Optimala Hårdvaruarkitekturen för 3D-lokalisering med Hög Precision på Nätverksgränsen. (Swedish)
Abstract [en]

The industry is moving towards a higher degree of automation and connectivity, where previously manual operations are being adapted for interconnected industrial robots. This thesis focuses specifically on the automation of tightening applications with pre-tightened bolts and collaborative robots. The use of 3D computer vision is investigated for direct localization of bolts, to allow for flexible assembly solutions. A localization algorithm based on 3D data is developed with the intention to create a lightweight software to be run on edge devices. A restrictive use of deep learning classification is therefore included, to enable product flexibility while minimizing the computational load.

The cloud-to-edge and cluster-to-edge trade-offs for the chosen application are investigated to identify smart offloading possibilities to cloud or cluster resources. To reduce operational delay, image partitioning to sub-image processing is also evaluated, to more quickly start the operation with a first coordinate and to enable processing in parallel with robot movement.

Four different hardware architectures are tested, consisting of two different Single Board Computers (SBC), a cluster of SBCs and a high-end computer as an emulated local cloud solution. All systems but the cluster is seen to perform without operational delay for the application. The optimal hardware architecture is therefore found to be a consumer grade SBC, being optimized on energy efficiency, cost and size. If only the variance in communication time can be minimized, the cluster shows potential to reduce the total calculation time without causing an operational delay.

Smart offloading to deep learning optimized cloud resources or a cluster of interconnected robot stations is found to enable increasing complexity and robustness of the algorithm. The SBC is also found to be able to switch between an edge and a cluster setup, to either optimize on the time to start the operation or the total calculation time. This offers a high flexibility in industrial settings, where product changes can be handled without the need for a change in visual processing hardware, further enabling its integration in factory devices.

Abstract [sv]

Industrin rör sig mot en högre grad av automatisering och uppkoppling, där tidigare manuella operationer anpassas för sammankopplade industriella robotar. Denna masteruppsats fokuserar specifikt på automatiseringen av åtdragningsapplikationer med förmonterade bultar och kollaborativa robotar. Användningen av 3D-datorseende undersöks för direkt lokalisering av bultar, för att möjliggöra flexibla monteringslösningar. En lokaliseringsalgoritm baserad på 3Ddata utvecklas med intentionen att skapa en lätt mjukvara för att köras på Edge-enheter. En restriktiv användning av djupinlärningsklassificering är därmed inkluderad, för att möjliggöra produktflexibilitet tillsammans med en minimering av den behövda beräkningskraften.

Avvägningarna mellan edge- och moln- eller klusterberäkning för den valda applikationen undersöks för att identifiera smarta avlastningsmöjligheter till moln- eller klusterresurser. För att minska operationell fördröjning utvärderas även bildpartitionering, för att snabbare kunna starta operationen med en första koordinat och möjliggöra beräkningar parallellt med robotrörelser.

Fyra olika hårdvaruarkitekturer testas, bestående av två olika enkortsdatorer, ett kluster av enkortsdatorer och en marknadsledande dator som en efterliknad lokal molnlösning. Alla system utom klustret visar sig prestera utan operationell fördröjning för applikationen. Den optimala hårdvaruarkitekturen visar sig därmed vara en konsumentklassad enkortsdator, optimerad på energieffektivitet, kostnad och storlek. Om endast variansen i kommunikationstid kan minskas visar klustret potential för att kunna reducera den totala beräkningstiden utan att skapa operationell fördröjning.

Smart avlastning till djupinlärningsoptimerade molnresurser eller kluster av sammankopplade robotstationer visar sig möjliggöra ökad komplexitet och tillförlitlighet av algoritmen. Enkortsdatorn visar sig även kunna växla mellan en edge- och en klusterkonfiguration, för att antingen optimera för tiden att starta operationen eller för den totala beräkningstiden. Detta medför en hög flexibilitet i industriella sammanhang, där produktändringar kan hanteras utan behovet av hårdvaruförändringar för visuella beräkningar, vilket ytterligare möjliggör dess integrering i fabriksenheter.

Place, publisher, year, edition, pages
2019. , p. 114
Series
TRITA-EECS-EX ; 2019:427
Keywords [en]
Computer Vision, Robot Guidance, Automated Assembly, Edge Computing, Cloud Computing, Cluster Computing, Deep Learning, Industrial Robots, Flexible Automation.
Keywords [sv]
Datorseende, Robotstyrning, Automatiserad Montering, Edge-beräkning, Molnberäkning, Klusterberäkning, Djupinlärning, Industrirobotar, Flexibel Automatisering.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-263104OAI: oai:DiVA.org:kth-263104DiVA, id: diva2:1366472
Supervisors
Examiners
Available from: 2019-10-30 Created: 2019-10-29 Last updated: 2019-10-30Bibliographically approved

Open Access in DiVA

fulltext(21711 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 21711 kBChecksum SHA-512
00fcf9c577a47fb03ef59f411a4a68bd9a38eeba3b3d63184dc8b4f5763ca4c3aae054856abcca67d62641249318cf372e348f717184812d373855a9363aa240
Type fulltextMimetype application/pdf

By organisation
School of Industrial Engineering and Management (ITM)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf