Electrochromic W–Ti oxide thin films were prepared by reactive DC magnetron sputtering and cycled voltammetrically in an electrolyte comprised of lithium perchlorate in propylene carbonate. The films were degraded for up to 500 voltammetric cycles in thefor voltage ranges of 1.5–4.0, 1.6–4.0, 1.7–4.0 and 2.0–4.0 V vs. Li/Li+. The films were subjected to a potentiostatic rejuvenation at a constant voltage of 6 V for 20 h to accomplish ion de-trapping. Optical changes were recorded during the electrochemical degradation and rejuvenation. The degradation kinetics was parametrized by a power-law model based on dispersive chemical kinetics. The results showed that optical transmittance contrast between bleached and colored states was regained after the ion de-trapping. It was also found that Ti containing films were more stable than pure W oxide ones.
Poster R P3.52