Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The fate of O+ ions observed in the plasma mantle: particle tracing modelling and cluster observations
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Swedish Institute of Space Physics, Kiruna, Sweden.ORCID iD: 0000-0001-6968-5405
Department of Physics, Umeå University, Umeå, Sweden; Belgian Institute for Space Aeronomy, Brussels, Belgium.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Swedish Institute of Space Physics, Kiruna, Sweden.ORCID iD: 0000-0002-7787-2160
Department of Physics, Umeå University, Umeå, Sweden.
Show others and affiliations
2020 (English)In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 38, no 3, p. 645-656Article in journal (Refereed) Published
Abstract [en]

Ion escape is of particular interest for studying the evolution of the atmosphere on geological timescales. Previously, using Cluster-CODIF data, we investigated the oxygen ion outflow from the plasma mantle for different solar wind conditions and geomagnetic activity. We found significant correlations between solar wind parameters, geomagnetic activity (Kp index), and the O+ outflow. From these studies, we suggested that O+ ions observed in the plasma mantle and cusp have enough energy and velocity to escape the magnetosphere and be lost into the solar wind or in the distant magnetotail. Thus, this study aims to investigate where the ions observed in the plasma mantle end up. In order to answer this question, we numerically calculate the trajectories of O+ ions using a tracing code to further test this assumption and determine the fate of the observed ions. Our code consists of a magnetic field model (Tsyganenko T96) and an ionospheric potential model (Weimer 2001) in which particles initiated in the plasma mantle region are launched and traced forward in time. We analysed 131 observations of plasma mantle events in Cluster data between 2001 and 2007, and for each event 200 O+ particles were launched with an initial thermal and parallel bulk velocity corresponding to the velocities observed by Cluster. After the tracing, we found that 98 % of the particles are lost into the solar wind or in the distant tail. Out of these 98 %, 20 % escape via the dayside magnetosphere.

Place, publisher, year, edition, pages
Copernicus Publications , 2020. Vol. 38, no 3, p. 645-656
National Category
Fluid Mechanics Aerospace Engineering
Research subject
Atmospheric Science; Fluid Mechanics
Identifiers
URN: urn:nbn:se:ltu:diva-76359DOI: 10.5194/angeo-38-645-2020ISI: 000538406700001Scopus ID: 2-s2.0-85085934066OAI: oai:DiVA.org:ltu-76359DiVA, id: diva2:1360224
Note

Validerad;2020;Nivå 2;2020-07-01 (johcin);

Full text license: CC BY

Available from: 2019-10-11 Created: 2019-10-11 Last updated: 2025-02-09Bibliographically approved
In thesis
1. How does O+ outflow vary with solar wind conditions?
Open this publication in new window or tab >>How does O+ outflow vary with solar wind conditions?
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The entire solar system including Earth is enveloped in a region of space where the Sun’s magnetic field dominates, this region is called the heliosphere. Due to this position in the heliosphere, a strong coupling exists between the Sun and our planet. The Sun continuously ejects particles, the solar wind, which is composed mainly of protons, electrons as well as some helium and heavier elements. These high energetic particles then hit the Earth and are partly deflected by the Earth’s magnetosphere (the region around Earth governed by the geomagnetic field). Depending on the strength of the solar wind hitting our planet, the magnetosphere is disturbed and perturbations can be seen down to the lower atmosphere.

The upper atmosphere is affected by short wave-length solar radiation that ionise the neutral atoms, this region is referred to as the ionosphere. In the ionosphere, some of the heavier ion populations, such as O+, are heated and accelerated through several processes and flow upward. In the polar regions (polar cap, cusp and plasma mantle) these mechanisms are particularly efficient and when the ions have enough energy to escape the Earth’s gravity, they move outward along open magnetic field lines. These outflowing ions may be lost into interplanetary space.

Another aspect that influences O+ ions are disturbed magnetospheric conditions. They correlate with solar active periods, such as coronal holes or the development of solar active regions. From these regions, strong ejections emerge, called coronal mass ejections (CMEs). When these CMEs interact with Earth, they produce a compression of the magnetosphere as well as reconnection between the terrestrial magnetic field lines and the interplanetary magnetic field (IMF) lines, which very often leads to geomagnetic storms. The energy in the solar wind as well as the coupling to the magnetosphere increase during geomagnetic storms and therefore the energy input to the ionosphere. This in turn increases the O+ outflow. In addition, solar wind parameter variations such as the dynamic pressure or the IMF also influence the outflowing ions.

Our observations are made with the Cluster mission, a constellation of 4 satellites flying around Earth in the key magnetospheric regions where we usually observe ion outflow. In this thesis, we estimated O+ outflow for different solar wind parameters (IMF, solar wind dynamic pressure) and extreme ultraviolet radiations (EUV) as well as for extreme geomagnetic storms. We found that O+ outflow increases exponentially with enhanced geomagnetic activity (Kp index) and about 2 orders of magnitude during extreme geomagnetic storms compared to quiet conditions. Furthermore, our investigations on solar wind parameters showed that O+ outflow increases for high dynamic pressure and southward IMF, as well as with EUV radiations. Finally, the fate of O+ ions from the plasma mantle were studied based on Cluster observations and simulations. These results confirm that ions observed in the plasma mantle have sufficient energy to be lost in the solar wind.

Place, publisher, year, edition, pages
Luleå University of Technology, 2019. p. 169
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Fusion, Plasma and Space Physics Aerospace Engineering
Research subject
Atmospheric science
Identifiers
urn:nbn:se:ltu:diva-76360 (URN)978-91-7790-465-6 (ISBN)978-91-7790-466-3 (ISBN)
Public defence
2019-11-15, Aulan, Rymdcampus, Kiruna, 09:00 (English)
Opponent
Supervisors
Available from: 2019-10-11 Created: 2019-10-11 Last updated: 2023-10-24Bibliographically approved

Open Access in DiVA

fulltext(2550 kB)24 downloads
File information
File name FULLTEXT02.pdfFile size 2550 kBChecksum SHA-512
3e45149330b087b1d6bff9ffd87a55c94f3c2fd4a1d8e824372bbae7d504a84ada8af3dcc3eb65f833735efde552eba7f45ce7ab6e2e6a5eada8684681ca23d7
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Schillings, AudreyNilsson, HansWesterberg, Lars Göran
By organisation
Space TechnologyFluid and Experimental Mechanics
In the same journal
Annales Geophysicae
Fluid MechanicsAerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 24 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 193 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf