Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Early Warning Leakage Detection for Pneumatic Systems on Heavy Duty Vehicles: Evaluating Data Driven and Model Driven Approach
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Tidigt varningssystem för att upptäcka läckage på luftsystem i tunga fordon : Utvärdering av en datadriven och en modellbaserad metod (Swedish)
Abstract [en]

Modern Heavy Duty Vehicles consist of a multitude of components and operate in various conditions. As there is value in goods transported, there is an incentive to avoid unplanned breakdowns. For this, condition based maintenance can be applied.\newline This thesis presents a study comparing the applicability of the data-driven Consensus SelfOrganizing Models (COSMO) method and the model-driven patent series introduced by Fogelstrom, applied on the air processing system for leakage detection on Scania Heavy Duty Vehicles. The comparison of the two methods is done using the Area Under Curve value given by the Receiver Operating Characteristics curves for features in order to reach a verdict.\newline For this purpose, three criteria were investigated. First, the effects of the hyper-parameters were explored to conclude a necessary vehicle fleet size and time period required for COSMO to function. The second experiment regarded whether environmental factors impact the predictability of the method, and finally the effect on the predictability for the case of nonidentical vehicles was determined.\newline The results indicate that the number of representations ought to be at least 60, rather with a larger set of vehicles in the fleet than with a larger window size, and that the vehicles should be close to identical on a component level and be in use in comparable ambient conditions.\newline In cases where the vehicle fleet is heterogeneous, a physical model of each system is preferable as this produces more stable results compared to the COSMO method.

Abstract [sv]

Moderna tunga fordon består av ett stort antal komponenter och används i många olika miljöer. Då värdet för tunga fordon ofta består i hur mycket gods som transporteras uppstår ett incitament till att förebygga oplanerade stopp. Detta görs med fördel med hjälp av tillståndsbaserat underhåll. Denna avhandling undersöker användbarheten av den data-drivna metoden Consensus SelfOrganizing Models (COSMO) kontra en modellbaserad patentserie för att upptäcka läckage på luftsystem i tunga fordon. Metoderna ställs mot varandra med hjälp av Area Under Curve-värdet som kommer från Receiver Operating Characteristics-kurvor från beskrivande signaler. Detta gjordes genom att utvärdera tre kriterier. Dels hur hyperparametrar influerar COSMOmetoden för att avgöra en rimlig storlek på fordonsflottan, dels huruvida omgivningsförhållanden påverkar resultatet och slutligen till vilken grad metoden påverkas av att fordonsflottan inte är identisk. Slutsatsen är att COSMO-metoden med fördel kan användas sålänge antalet representationer överstiger 60 och att fordonen inom flottan är likvärdiga och har använts inom liknande omgivningsförhållanden. Om fordonsflottan är heterogen så föredras en fysisk modell av systemet då detta ger ett mer stabilt resultat jämfört med COSMO-metoden.

Place, publisher, year, edition, pages
2019. , p. 99
Series
TRITA-ITM-EX ; 2019:596
Keywords [en]
Condition Based Maintenance, Predictive Maintenance, Leakage Detection, Data Driven, Model Driven
Keywords [sv]
Tillståndsbaserat Underhåll, Prediktivt Underhåll, Läckagedetektering, Datadriven, Modelldriven
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-261207OAI: oai:DiVA.org:kth-261207DiVA, id: diva2:1357268
External cooperation
Scania CV AB
Subject / course
Mechatronics
Educational program
Degree of Master
Presentation
2019-08-29, 00:00
Supervisors
Examiners
Available from: 2019-10-03 Created: 2019-10-03 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(6305 kB)412 downloads
File information
File name FULLTEXT01.pdfFile size 6305 kBChecksum SHA-512
07c9ae24020100bc1dd8cc934ce434468b16ab445ed5b007b36ee6d58f2ae8f69d79746790d831ad11275b6a29a8064d418ee297c3ab25fbc3987eb344e6d58e
Type fulltextMimetype application/pdf

By organisation
Mechatronics
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 413 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 438 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf