Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Springback prediction and validation in hot forming of a double-curved component in alloy 718
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mechanics of Solid Materials. Division of Materials and Production, RISE IVF AB, Vällaregatan 30, SE-293 38 Olofström, Sweden.ORCID iD: 0000-0002-1432-444X
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mechanics of Solid Materials. Division of Materials and Production, RISE IVF AB, Vällaregatan 30, SE-293 38 Olofström, Sweden.
DYNAmore Nordic AB, Brigadgatan 5, SE-587 58 Linköping, Sweden.
GKN Aerospace Engine Systems Sweden, SE-461 38 Trollhättan, Sweden.
Show others and affiliations
2021 (English)In: International Journal of Material Forming, ISSN 1960-6206, E-ISSN 1960-6214, Vol. 14, no 6, p. 1355-1373Article in journal (Refereed) Published
Abstract [en]

The demands associated with the production of advanced parts made of nickel-base superalloys are continuously increasing to meet the requirements of current environmental laws. The use of lightweight components in load-carrying aero-engine structures has the potential to significantly reduce fuel consumption and greenhouse gas emissions. Furthermore, the competitiveness of the aero-engine industry can benefit from reduced production costs and shorter development times while minimizing costly try-outs and increasing the efficiency of engines. The manufacturing process of aero-engine parts in superalloys at temperatures close to 950 °C produces reduced stamping force, residual stresses, and springback compared to traditional forming procedures occurring at room temperature. In this work, a hot forming procedure of a double-curved component in alloy 718 is studied. The mechanical properties of the material are determined between 20 and 1000 °C. The presence and nature of serrations in the stress–strain curves are assessed. The novel version of the anisotropic Barlat Yld2000-2D material model, which allows the input of thermo-mechanical data, is used in LS-DYNA to model the behaviour of the material at high temperatures. The effect of considering the stress-relaxation data on the predicted shape distortions is evaluated. The results show the importance of considering the thermo-mechanical anisotropic properties and stress-relaxation behaviour of the material to predict the final geometry of the component with high accuracy. The implementation of advanced material models in the finite element (FE) analyses, along with precise process conditions, is vital to produce lightweight components in advanced materials of interest to the aerospace industry.

Place, publisher, year, edition, pages
Springer Nature , 2021. Vol. 14, no 6, p. 1355-1373
Keywords [en]
hot forming, alloy 718, superalloy, stress relaxation, anisotropy, high temperature
National Category
Manufacturing, Surface and Joining Technology Metallurgy and Metallic Materials Applied Mechanics
Research subject
Solid Mechanics; Engineering Materials
Identifiers
URN: urn:nbn:se:ltu:diva-76204DOI: 10.1007/s12289-021-01615-xISI: 000616069300001Scopus ID: 2-s2.0-85100708879OAI: oai:DiVA.org:ltu-76204DiVA, id: diva2:1356877
Projects
Virtual process chain for superalloy sheet metal aero engine structures - Validation and demonstrator (NFFP6)
Funder
Vinnova, 2013-01173
Note

Validerad;2022;Nivå 2;2022-03-03 (hanlid);

Artikeln har tidigare förekommit som manuskript i avhandling

Available from: 2019-10-02 Created: 2019-10-02 Last updated: 2022-03-03Bibliographically approved
In thesis
1. Modelling Aspects in Forming and Welding of Nickel-Base Superalloys
Open this publication in new window or tab >>Modelling Aspects in Forming and Welding of Nickel-Base Superalloys
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The reduction of fuel consumption and carbon dioxide emissions are currently a key factor for the aviation industry because of major concerns about climate change and more restrictive environmental laws. One way to reduce both fuel consumption and CO2 emissions is by significantly decreasing the weight of vehicles while increasing the efficiency of the engine. To meet these requirements, the European aero-engine industry is continuously focusing on improved engine designs and alternative manufacturing methods for load-carrying structures in advanced materials, such as titanium and nickel-base superalloys. These new manufacturing methods involve sheet-metal parts, small castings, and forgings assembled using welding, enabling flexible designs where each part is made of the most suitable materials and states, with advantages such as reduced product cost, lower weight, and increased engine efficiency.

In this thesis, a manufacturing process chain including forming and welding in two nickel-base superalloys, alloy 718 and Haynes® 282®, is studied. The aim of this work is to determine which aspects within the material and process are the most relevant to accurately predict the amount of shape distortions that occur along the manufacturing chain. The effect of the forming temperature on the predicted springback is included. The results are compared with experimental cold and hot forming tests with a subsequent welding procedure. During forming of a double-curved component in alloy 718 at room temperature, open fractures are observed in the drawbead regions, which could not be predicted while evaluating the formability of the material based on Nakazima tests and forming limit curves (FLC). The generalised incremental stress-state dependent damage model (GISSMO) is calibrated and coupled with the anisotropic Barlat Yld2000-2D material model to accurately predict material failure during forming using LS-DYNA. The mechanical properties of alloy 718 are determined via uniaxial tensile, plane strain, shear, and biaxial tests at 20 °C. The deformations are continuously evaluated using the digital image correlation (DIC) system ARAMIS™. Numerical predictions are able to accurately predict failure on the same regions as observed during the experimental forming tests. Comparisons of the distribution of damage on one of the drawbeads, between simulations and damage measurements by acoustic emission, indicate that higher damage values correspond to bigger micro cracks. The history from the sheet-metal forming procedure, i.e. residual stresses, strains, element thickness, and geometry, is used as the input for the FE analysis of a subsequent welding procedure of a strip geometry in alloy 718 and Haynes® 282®. A comprehensive characterization of the elasto-plastic properties of both alloys between 20 and 1000 °C is included. Other temperature-dependent properties are extracted from JMatPro-v9 for the corresponding specific batches. The results from the simulations show that the welding procedure further increases the shape distortions over the part. Encouraging agreement was found between the model predictions and the results of forming and welding tests in alloy 718. The findings underscore the importance of including the material history and accurate process conditions along the manufacturing chain to both the prediction accuracy of accumulated shape distortions, and to the potential for the industry.

The work also comprises hot forming of the double-curved component in alloy 718 and Haynes® 282®. The presence and nature of serrations due to the dynamic strain aging (DSA) phenomenon between 300 and 800 °C is studied. Microstructural observations are consistent with the behaviour of the material at the different temperatures tested. The residual stresses obtained from the hot forming simulations are transformed based on the stress-relaxation tests performed at high temperatures ranging from 700 to 1000 °C. The results show the importance of using the novel modelling approach combining the anisotropic Barlat Yld2000-2D material model with the thermo-mechanical properties and stress-relaxation behaviour of the material to predict the final geometry of the component with high accuracy. A welding simulation of a bi-metallic strip geometry obtained from the hot formed double-curved component is performed numerically. The effect of the two superalloys on the shape distortions over the part is discussed.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2019
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keywords
alloy 718, Haynes 282, cold forming, hot forming, material characterization, GISSMO, welding, heat treatment, manufacturing chain, springback, shape distortions, dynamic strain aging, DSA, microstructure
National Category
Metallurgy and Metallic Materials Manufacturing, Surface and Joining Technology
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:ltu:diva-76243 (URN)978-91-7790-460-1 (ISBN)978-91-7790-461-8 (ISBN)
Public defence
2019-11-29, E231, Luleå, 09:00 (English)
Opponent
Supervisors
Projects
Virtual process chain for superalloy sheet metal aero engine structures - Validation and demonstrator (NFFP6)Validation of a fabrication procedure for bi-metallic aero engine components in superalloys (NFFP7)
Funder
Vinnova, 2013-01173 and 2017-04849
Available from: 2019-10-04 Created: 2019-10-04 Last updated: 2019-11-14Bibliographically approved

Open Access in DiVA

fulltext(5365 kB)224 downloads
File information
File name FULLTEXT01.pdfFile size 5365 kBChecksum SHA-512
28d5702ee12c4afa3e56928d50030a22a79080a1bfd86774acc5e41aa3a99fbb777569bb924ba9151befc664105bf59276f2b43f198ce8ce07bb1442f39e7d43
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Pérez Caro, LluísOdenberger, Eva-LisÅkerfeldt, PiaOldenburg, Mats
By organisation
Mechanics of Solid MaterialsMaterial ScienceSolid Mechanics
In the same journal
International Journal of Material Forming
Manufacturing, Surface and Joining TechnologyMetallurgy and Metallic MaterialsApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 224 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 350 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf