Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. (Computer Vision)ORCID iD: 0000-0001-5211-6388
2019 (English)Conference paper, Poster (with or without abstract) (Refereed)
Place, publisher, year, edition, pages
2019.
National Category
Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:kth:diva-260511OAI: oai:DiVA.org:kth-260511DiVA, id: diva2:1355772
Conference
International Conference on Machine Learning (ICML) Workshops, 2019 Workshop on Uncertainty and Robustness in Deep Learning
Note

QC 20191001

Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2025-02-07Bibliographically approved
In thesis
1. On Label Noise in Image Classification: An Aleatoric Uncertainty Perspective
Open this publication in new window or tab >>On Label Noise in Image Classification: An Aleatoric Uncertainty Perspective
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Deep neural networks and large-scale datasets have revolutionized the field of machine learning. However, these large networks are susceptible to overfitting to label noise, resulting in generalization degradation. In response, the thesis closely examines the problem both from an empirical and theoretical perspective. We empirically analyse the input smoothness of networks as they overfit to label noise, and we theoretically explore the connection to aleatoric uncertainty. These analyses improve our understanding of the problem and have led to our novel methods aimed at enhancing robustness against label noise in classification.

Abstract [sv]

Djupa neurala nätverk och storskaliga dataset har revolutionerat maskininlärningsområdet. Dock är dessa stora nätverk känsliga för överanpassning till felmarkerade etiketter, vilket leder till försämrad generalisering. Som svar på detta undersöker avhandlingen noggrant problemet både från en empirisk och teoretisk synvinkel. Vi analyserar empiriskt nätverkens känslighet försmå ändringar i indatan när de över anpassar till felmarkerade etiketter, och vi utforskar teoretiskt kopplingen till aleatorisk osäkerhet. Dessa analyser förbättrar vår förståelse av problemet och har lett till våra nya metoder med syfte att vara robusta mot felmarkerade etiketter i klassificering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. xi, 68
Series
TRITA-EECS-AVL ; 2024:45
Keywords
Label noise, aleatoric uncertainty, noisy labels, robustness, etikettbrus, osäkerhet, felmarkerade etiketter, robusthet
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-346453 (URN)978-91-8040-925-4 (ISBN)
Public defence
2024-06-03, https://kth-se.zoom.us/w/61097277235, F3 (Flodis), Lindstedsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20240516

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2024-06-10Bibliographically approved

Open Access in DiVA

fulltext(1258 kB)178 downloads
File information
File name FULLTEXT01.pdfFile size 1258 kBChecksum SHA-512
4ca155b210b8878fd8bced2db7a290cc9f017ccd5cc3885d77d179d81abde30f7fb3ce88198c6c89e84b2f2228a16424f04d7b751ea39d8e121734060748d622
Type fulltextMimetype application/pdf

Other links

Conference webpage

Search in DiVA

By author/editor
Englesson, ErikAzizpour, Hossein
By organisation
Robotics, Perception and Learning, RPL
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar
Total: 178 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 567 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf