Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Load and Demand Forecasting in Iraqi Kurdistan using Time series modelling
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This thesis examines the concept of time series forecasting. More specifically, it predicts the load and power demand in Sulaymaniyah, Iraqi Kurdistan, who are today experiencing frequent power shortages. This study applies a commonly used time series model, the autoregressive integrated moving average model, which is compared to the naïve method. Several key model properties are inspected to evaluate model accuracy. The model is then used to forecast the load and the demand on a daily, weekly and monthly basis. The forecasts are evaluated by examining the residual metrics. Furthermore, the quantitative results and the answers collected from interviews are used as a basis to investigate the conditions of capacity planning in order to determine a suitable strategy to minimize the unserved power demand. The findings indicate an unsustainable over consumption of power in the region due to low tariffs and subsidized energy. A suggested solution is to manage power demand by implementing better strategies such as increasing tariffs and to use demand forecast to supply power accordingly. The monthly supply forecast in this study outperforms the baseline method but not the demand forecast. On weekly basis, both the load and the demand models underperform. The performance of the daily forecasts performs equally or worse than the baseline. Overall, the supply predictions are more precise than the demand predictions. However, there is room for improvement regarding the forecasts. For instance, better model selection and data preparation can result in more accurate forecasts.

Abstract [sv]

Denna studie undersöker prediktion av tidserier. Den tittar närmare på last- och effektbehov i Sulaymaniyah i Irak som idag drabbas av regelbunden effektbrist. Rapporten applicerar en vedertagen tidseriemodell, den autoregressiva integrerade glidande medelvärdesmodellen, som sedan jämförs med den naiva metoden. Några karaktäristiska modellegenskaper undersöks för att evaluera modellens noggrannhet. Den anpassade modellen används sedan för att predikera last- och effektbehovet på dags-, månads-, och årsbasis. Prognoserna evalueras genom att undersöka dess residualer. Vidare så användas de kvalitativa svaren från intervjuerna som underlag för att undersöka förutsättningarna för kapacitetsplanering och den strategi som är bäst lämpad för att möta effektbristen. Studien visar att det råder en ohållbar överkonsumtion av energi i regionen som konsekvens av låga elavgifter och subventionerad energi. En föreslagen lösning är att hantera efterfrågan genom att implementera strategier som att höja elavgifter men även försöka matcha produktionen med efterfrågan med hjälp av prognoser. De månadsvisa prognoserna för produktionen i studien överträffar den naiva metoden men inte för prognoserna för efterfrågan. På veckobasis underpresterar båda modellerna. De dagliga prognoserna presterar lika bra eller värre än den naiva metoden. I sin helhet lyckas modellerna förutspå utbudet bättre än efterfrågan på effekt. Men det finns utrymme för förbättringar. Det går nog att uppnå bättre resultat genom bättre förbehandling av data och noggrannare valda tidseriemodeller.

Place, publisher, year, edition, pages
2019. , p. 19
Series
TRITA-EECS-EX ; 2019:405
Keywords [en]
ARIMA, Capacity planning, Energy, Kurdistan, Time series, Load forecasting.
Keywords [sv]
ARIMA, Kapacitetsplanering, Energi, Kurdistan, Tidserier, Prognoser.
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-260260OAI: oai:DiVA.org:kth-260260DiVA, id: diva2:1355007
Examiners
Available from: 2019-10-09 Created: 2019-09-26 Last updated: 2019-10-09Bibliographically approved

Open Access in DiVA

fulltext(1781 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 1781 kBChecksum SHA-512
45f36282a07b80128d5a7a6a8452c093328b00fbaf640dfbbe57c233150744feb9af2425fe96d408bef3fdf7b8f78377e6d4711539017e51b2e5833d38ab8d03
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf