Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Machine Learning for Activity Recognition of Dumpers
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The construction industry has lagged behind other industries in productivity growth rate. Earth-moving sites, and other practices where dumpers are used, are no exceptions. Such projects lack convenient and accurate solutions for utilization mapping and tracking of mass flows, which both currently and mainly rely on manual activity tracking. This study intends to provide insights of how autonomous systems for activity tracking of dumpers can contribute to the productivity at earthmoving sites. Autonomous systems available on the market are not implementable to dumper fleets of various manufacturers and model year, whereas this study examines the possibilities of using activity recognition by machine learning for a system based on smartphones mounted in the driver’s cabin. Three machine learning algorithms (naive Bayes, random forest and feed-forward backpropagation neural network) are trained and tested on data collected by smartphone sensors. Conclusions are that machine learning models, and particularly the neural network and random forest algorithms, trained on data from a standard smartphone, are able to estimate a dumper’s activities at a high degree of certainty. Finally, a market analysis is presented, identifying the innovation opportunity for a potential end-product as high.

Abstract [sv]

Byggnadsbranschen har halkat efter andra branscher i produktivitetsökning. Markarbetesprojekt och andra arbeten där dumprar används är inga undantag. Sådana projekt saknar användarvänliga system för att kartlägga maskinutnyttjande och massaflöde. Nuvarande lösningar bygger framförallt på manuellt arbete. Denna studie syftar skapa kännedom kring hur autonoma system för aktivitetsspårning av dumprar kan öka produktiviteten på markarbetesprojekt. Befintliga autonoma lösningar är inte implementerbara på maskinparker med olika fabrikat eller äldre årsmodeller. Denna studie undersöker möjligheten att applicera aktivitetsigenkänning genom maskininlärning baserad på smartphones placerade i förarhytten för en sådan autonom lösning. Tre maskininlärningsalgoritmer (naive Bayes, random forest och backpropagation neuralt nätverk) tränas och testas på data från sensorer tillgängliga i vanliga smartphones. Studiens slutsatser är att maskininlärningsmodeller, i synnerhet neuralt nätverk och random forest-algoritmerna, tränade på data från vanliga smartphones, till hög grad kan känna igen en dumpers aktiviteter. Avslutningsvis presenteras en marknadsanalys som bedömer innovationsmöjligheten för en eventuell slutprodukt som hög.

Place, publisher, year, edition, pages
2019. , p. 21
Series
TRITA-EECS-EX ; 2019:404
Keywords [en]
Civil engineering, earth-moving, dumper, machine learning, naive bayes, random forest, neural networks, smartphone sensors, accelerometer, gyroscope.
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-260256OAI: oai:DiVA.org:kth-260256DiVA, id: diva2:1354995
Examiners
Available from: 2019-10-09 Created: 2019-09-26 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(7800 kB)1052 downloads
File information
File name FULLTEXT01.pdfFile size 7800 kBChecksum SHA-512
f6376baec26390b139cbf01dad6368d9e7487514ee7d78b538720be650e8f8712545eaa98be2cce6505874ff51899f738ed892878ec4d65ac8f54fc6b05097e9
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1058 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 2433 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf