Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sentiment and growth of different news categories on Twitter: A study in Natural Language Processing
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Sentiment och tillväxt av olika nyhetskategorier på Twitter (Swedish)
Abstract [en]

In this age of digitalization, people have begun to change their news consumption behavior. More than half the population of the world has internet access and thereby readily available platforms for acquiring and disseminating news. Twitter has evolved into being a staple for news discussions and even transforming into a stable news source provider. This study aims to examine Twitter as a legitimate news media based on certain news categories and how they differ regarding public interest and opinion. The categories are celebrity, crime, economy, politics & global and we examined the relative growth rate and public sentiment for each category during a period of 10 hours before and 14 hours after an event occurring. The results indicate that the political news category had the most public appraise and also the highest public interest. Furthermore, the political news category also had the lowest fluctuation regarding public sentiment. On the other side of the spectrum, the crime category had both the most negative public sentiment and the lowest relative growth rate.

Abstract [sv]

I dagens digitaliserade värld har människor börjat ändra på sina nyhetsrelaterade konsumtionsvanor. Över halva jordens befolkning har tillgång till internet och därvid tillgängliga plattformar för att erhålla och sprida nyheter. Twitter har utvecklats till en primär aktör för nyhetsdiskussioner och har delvis transformerats till en stabil nyhetskälla. Denna studie ämnar att undersöka huruvida Twitter är en legitim aktör inom nyhetsindustrin genom att granska fem nyhetskategorier och analysera det allmänna intresset samt sentimentet för dessa. Detta genomfördes genom att studera utvecklingen 10h innan och 14h efter en nyhetshändelse. Kategorierna beträffar kändis, brott, ekonomi, politik & globala nyheter. Resultatet tyder på att den politiska nyhetskategorin hade den högsta relativa tillväxttakten och även högst sentiment. Dessutom hade politik minst fluktuering gällande sentiment. Å andra sidan hade brottkategorin både den lägsta relativa tillväxttakten och det mest negativa sentimentet.

Place, publisher, year, edition, pages
2019. , p. 36
Series
TRITA-EECS-EX ; 2019:362
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-259986OAI: oai:DiVA.org:kth-259986DiVA, id: diva2:1354136
Supervisors
Examiners
Available from: 2019-10-02 Created: 2019-09-24 Last updated: 2019-10-02Bibliographically approved

Open Access in DiVA

fulltext(1129 kB)6 downloads
File information
File name FULLTEXT01.pdfFile size 1129 kBChecksum SHA-512
5eca98528661e3c9727cfd6706288e9ccbddcfcb83c67d6d210e1c687215f348d795ed67efe7d9cb304f57fddd930dd7782b88776189380ad4edcf22fe4257ab
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 6 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf