Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantum Simulation Logic, Oracles, and the Quantum Advantage
Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1082-8325
2019 (English)In: Entropy, E-ISSN 1099-4300, Vol. 21, no 8, article id 800Article in journal (Refereed) Published
Abstract [en]

Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how quantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific algorithms, such as the Deutsch-Jozsa and Simons algorithms, there simply is no advantage in terms of query complexity. This does not detract from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shors algorithm for integer factorization.

Place, publisher, year, edition, pages
MDPI , 2019. Vol. 21, no 8, article id 800
Keywords [en]
simulation framework; quantum query complexity; quantum algorithms
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:liu:diva-160433DOI: 10.3390/e21080800ISI: 000483732700033OAI: oai:DiVA.org:liu-160433DiVA, id: diva2:1353454
Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2023-03-28Bibliographically approved
In thesis
1. A Resource for Quantum Computation
Open this publication in new window or tab >>A Resource for Quantum Computation
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we address the question, what is the resource, or property, that enables the advantage of quantum computers? The theory of quantum computers dates back to the eighties, so one would think there already is an answer to this question. There are several proposed solutions, but to this date, there is no consensus on an answer. 

Primarily, the advantage of quantum computers is characterized by a speedup for certain computational problems. This speedup is measured by comparing quantum algorithms with the best-known classical algorithms. For some algorithms we assume access to an object called oracle. The oracle computes a function, and the complexity of the oracle is of no concern. Instead, we count the number of queries to the oracle needed to solve the problem. Informally, the question we ask using an oracle is: if we can compute this function efficiently, what else could we then compute. However, using oracles while measuring a quantum speedup, we assume access to vastly different oracles residing in different models of computation.

For our investigation of the speedup, we introduce a classical simulation framework that imitates quantum algorithms. The simulation suggests that the property enabling the potential quantum speedup is the ability to store, process, and retrieve information in an additional degree of freedom. We then theoretically verified that this is true for all problems that can be efficiently solved with a quantum computer.

In parallel to this, we also see that quantum oracles sharply specify the information we can retrieve from the additional degree of freedom, while regular oracles do not. A regular oracle does not even allow for an extra degree of freedom. We conclude that comparing quantum with classical oracle query complexity bounds does not provide conclusive evidence for a quantum advantage.  

Abstract [sv]

I denna avhandling behandlar vi frågan, vad är resursen eller egenskapen som möjliggör fördelen hos kvantdatorer. Teorin bakom kvantdatorer daterar tillbaka till åttiotalet, så man skulle kunna tro att det redan finns ett svar på frågan. Det finns flera föreslagna lösningar, men hittills råder det ingen enighet kring ett svar.       

Fördelen hos kvantdatorer kännetecknas främst av en uppsnabbning för vissa beräkningsproblem. Denna uppsnabbning mäts genom att man jämför kvantalgoritmer med de bästa klassiska algoritmerna som vi känner till. För vissa algoritmer så antas att man har tillgång till ett objekt som kallas orakel. Ett orakel beräknar en funktion och vi bryr oss inte om komplexiteten hos oraklet. Istället så räknar vi antalet annrop man behöver göra till oraklet för att lösa problemet. Informellt så kan man säga att när man använder ett orakel så ställer vi frågan: om vi kan beräkna den här funktionen effektivt, vad kan vi då beräkna? Men när man använder orakel för att mäta en kvantuppsnabbning så antar vi att man har tillgång till väldigt olika orakel i olika beräkningsmodeller.       

För vår undersökning av kvantuppsnabbningen introducerar vi ett klassiskt simuleringsramverk som imiterar kvantalgoritmer. Simuleringen antyder att egenskapen som möjliggör den potentiella kvantuppsnabbningen är förmågan att lagra, bearbeta och hämta information i en extra frihetsgrad. Vi verifierar sedan teoretiskt att detta är sant för alla problem som effektivt kan lösas med en kvantdator.       

Parallellt med detta ser vi att kvantorakel entydigt specificerar den information vi kan hämta ur den extra frihetsgraden, medan vanliga orakel inte gör det. Ett vanligt orakel tillåter inte ens en extra frihetsgrad. Från detta drar vi slutsatsen att jämförelser mellan kvantmekanisk och klassisk anropskomplexitet inte kan ge övertygande bevis för en kvantfördel. 

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. p. 50
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2191
National Category
Other Computer and Information Science
Identifiers
urn:nbn:se:liu:diva-181127 (URN)10.3384/9789179291242 (DOI)9789179291235 (ISBN)9789179291242 (ISBN)
Public defence
2022-01-20, Ada Lovelace, B-building + Online, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2021-11-18 Created: 2021-11-17 Last updated: 2021-12-03Bibliographically approved

Open Access in DiVA

Quantum Simulation Logic, Oracles, and the Quantum Advantage(5020 kB)964 downloads
File information
File name FULLTEXT01.pdfFile size 5020 kBChecksum SHA-512
2107b76a7010c4aa9c88d5c01e4b21abf23625b2150b68789fd2ca469243c6e8a5c6153cbaeaa6ac9358cbd1b6e6a84ce15cddf4d5fa4814890a0bf387cf7299
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, NiklasLarsson, Jan-Åke
By organisation
Information CodingFaculty of Science & Engineering
In the same journal
Entropy
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 964 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 643 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf