Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-1688-9732
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers.

Abstract [de]

Die vorliegende Dissertation wurde in der Abteilung für Festigkeitslehre an der Universität von Linköping erstellt und ist Teil eines Forschungsprojektes, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst.

Das Hauptziel dieser Arbeit war es, das Verständnis des Bruchverhaltens von einkristallinen Superlegierungen auf Nickelbasis zu vertiefen und ein Modell zur Vorhersage des Wachstumsverhaltens von Ermüdungsrissen zu entwickeln. Es wurde beobachtet, dass das Risswachstum in diesen Materialien einem von zwei unterschiedlichen Rissmodi folgt; Modus I Rissfortschritt senkrecht zur Belastungsrichtung oder kristallographisches Risswachstum auf den oktaedrischen f111g-Ebenen, wobei letzteres mit einer erhöhten Ermüdungsrisswachstumsrate verbunden ist. Somit ist es von grosser Bedeutung dieses Verhalten in der Lebensdauervorhersage einer Komponente zu berücksichtigen. Demzufolge wurde ein Modell für die Vorhersage des Übergangs zwischen den Rissmodi und der korrekten aktiven kristallographischen Ebene, d.h. des Risspfades, sowie der kristallographischen Risswachstumsrate erarbeitet. Dieses Modell basiert auf geeigneten Rissantriebskräften, welche mit Hilfe dreidimensionaler Finite-Elemente-Simulationen berechnet werden. Im Fokus stand insbesondere der Einuss der kristallographischen Orientierung auf das Bruchverhalten. Ausserdem wird ein Modell zur Berücksichtigung von Restspannungen in der Risswachstumsmodellierung präsentiert. Alle Modellierungsarbeiten wurden durch Experimente an verschiedenen Probengeometrien mit unterschiedlichen kristallographischen Orientierungen kalibriert und validiert.

Diese Dissertation besteht aus zwei Teilen, wobei Teil I aus einer Einführung und einem Hintergrund in das Forschungsgebiet und Teil II aus sechs beigefügten Forschungsartikeln besteht.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. , p. 55
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2023
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:liu:diva-160477DOI: 10.3384/diss.diva-160477ISBN: 9789179299835 (print)OAI: oai:DiVA.org:liu-160477DiVA, id: diva2:1353435
Public defence
2019-12-13, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2019-09-24 Created: 2019-09-23 Last updated: 2019-11-26Bibliographically approved
List of papers
1. A FINITE ELEMENT STUDY OF THE EFFECT OF CRYSTAL ORIENTATION AND MISALIGNMENT ON THE CRACK DRIVING FORCE IN A SINGLE-CRYSTAL SUPERALLOY
Open this publication in new window or tab >>A FINITE ELEMENT STUDY OF THE EFFECT OF CRYSTAL ORIENTATION AND MISALIGNMENT ON THE CRACK DRIVING FORCE IN A SINGLE-CRYSTAL SUPERALLOY
Show others...
2016 (English)In: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 7A, AMER SOC MECHANICAL ENGINEERS , 2016, no UNSP V07AT28A002Conference paper, Published paper (Refereed)
Abstract [en]

The elastic and plastic anisotropy of the single-crystal materials bring many difficulties in terms of modeling, evaluation and prediction of fatigue crack growth. In this paper a single-crystal material model has been adopted to a finite element-environment, which is paired with a crack growth tool. All simulations are performed in a three-dimensional context. This methodology makes it possible to analyze complex finite element-models, which are more application-near than traditional two-dimensional models. The influence of the crystal orientation, as well as the influence of misalignments of the crystal orientation due to the casting process are investigated. It is shown that both the crystal orientation and the misalignment from the ideal crystal orientation are important for the crack driving force. The realistic maximum limit of 10 degrees misalignment is considered. It can be seen that crack growth behavior is highly influenced by the misalignment. This knowledge is of great interest for the industry in order to evaluate the crack growth in single-crystal components more accurately.

Place, publisher, year, edition, pages
AMER SOC MECHANICAL ENGINEERS, 2016
National Category
Applied Mechanics
Identifiers
urn:nbn:se:liu:diva-132570 (URN)10.1115/GT2016-56305 (DOI)000385461600011 ()978-0-7918-4983-5 (ISBN)
Conference
ASME Turbo Expo: Turbine Technical Conference and Exposition
Available from: 2016-11-14 Created: 2016-11-14 Last updated: 2019-11-19
2. Prediction of crystallographic cracking planes in single-crystal nickel-base superalloys
Open this publication in new window or tab >>Prediction of crystallographic cracking planes in single-crystal nickel-base superalloys
Show others...
2018 (English)In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 196, p. 206-223Article in journal (Refereed) Published
Abstract [en]

The inherent anisotropy of single-crystal nickel-base superalloys brings many difficulties in terms of modelling, evaluation and prediction of fatigue crack growth. Two models to predict on which crystallographic plane cracking will occur is presented. The models are based on anisotropic stress intensity factors resolved on crystallographic slip planes calculated in a three-dimensional finite-element context. The developed models have been compared to experiments on two different test specimen geometries. The results show that a correct prediction of the crystallographic cracking plane can be achieved. This knowledge is of great interest for the industry and academia to better understand and predict crack growth in single-crystal materials.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Single-crystal nickel-base superalloys; Anisotropy; Fracture mechanics; Stress intensity factor; Crystallographic cracking
National Category
Applied Mechanics
Identifiers
urn:nbn:se:liu:diva-148380 (URN)10.1016/j.engfracmech.2018.04.047 (DOI)000432704300014 ()
Note

Funding Agencies|Swedish Energy Agency; Siemens Industrial Turbomachinery AB through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-702]

Available from: 2018-06-15 Created: 2018-06-15 Last updated: 2019-11-19
3. Evaluation of the crystallographic fatigue crack growth rate in a single-crystal nickel-base superalloy
Open this publication in new window or tab >>Evaluation of the crystallographic fatigue crack growth rate in a single-crystal nickel-base superalloy
Show others...
2019 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 127, p. 259-267Article in journal (Refereed) Published
Abstract [en]

Cracks in single-crystal nickel-base superalloys have been observed to switch cracking mode from Mode I to crystallographic cracking. The crack propagation rate is usually higher on the crystallographic planes compared to Mode I, which is important to account for in crack growth life predictions. In this paper, a method to evaluate the crystallographic fatigue crack growth rate, based on a previously developed crystallographic crack driving force parameter, is presented. The crystallographic crack growth rate was determined by evaluating heat tints on the fracture surfaces of the test specimens from the experiments. Complicated crack geometries including multiple crystallographic crack fronts were modelled in a three dimensional finite element context, The data points of the crystallographic fatigue crack growth rate collapse on a narrow scatter band for the crystallographic cracks indicating a correlation with the previously developed crystallographic crack driving force.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD, 2019
Keywords
Single-crystal nickel-base superalloys; Finite element analysis; Fracture mechanics; Stress intensity factor; Crystallographic cracking; Fatigue crack growth rate
National Category
Applied Mechanics
Identifiers
urn:nbn:se:liu:diva-160388 (URN)10.1016/j.ijfatigue.2019.05.023 (DOI)000482492600024 ()
Note

Funding Agencies|Linkoping University; Siemens Industrial Turbomachinery AB

Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2021-05-24
4. Three-Dimensional LEFM Prediction of Fatigue Crack Propagation in a Gas Turbine Disk Material at Component Near Conditions
Open this publication in new window or tab >>Three-Dimensional LEFM Prediction of Fatigue Crack Propagation in a Gas Turbine Disk Material at Component Near Conditions
Show others...
2016 (English)In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 138, no 4, article id 042506Article in journal (Refereed) Published
Abstract [en]

In this paper, the possibility to use linear elastic fracture mechanics (LEFM), with and without a superimposed residual stress field, to predict fatigue crack propagation in the gas turbine disk material Inconel 718 has been studied. A temperature of 400 degrees C and applied strain ranges corresponding to component near conditions have been considered. A three-dimensional crack propagation software was used for determining the stress intensity factors (SIFs) along the crack path. In the first approach, a linear elastic material behavior was used when analyzing the material response. The second approach extracts the residual stresses from an uncracked model with perfectly plastic material behavior after one loading cycle. As a benchmark, the investigated methods are compared to experimental tests, where the cyclic lifetimes were calculated by an integration of Paris law. When comparing the results, it can be concluded that the investigated approaches give good results, at least for longer cracks, even though plastic flow was taking place in the specimen. The pure linear elastic simulation overestimates the crack growth for all crack lengths and gives conservative results over all considered crack lengths. Noteworthy with this work is that the 3D-crack propagation could be predicted with the two considered methods in an LEFM context, although plastic flow was present in the specimens during the experiments.

Place, publisher, year, edition, pages
ASME, 2016
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:liu:diva-126240 (URN)10.1115/1.4031526 (DOI)000371125800020 ()
Note

Funding Agencies|Siemens Industrial Turbomachinery AB through Research Consortium of Materials Technology for Thermal Energy Processes [KME-702]; Swedish Energy Agency

Available from: 2016-03-21 Created: 2016-03-21 Last updated: 2019-11-19

Open Access in DiVA

Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys(4536 kB)915 downloads
File information
File name FULLTEXT01.pdfFile size 4536 kBChecksum SHA-512
2b44dd83b9489674145a023f497226bb9f7be9cf1297e7134da87861a790ae8786ed8d0a0db36b4454a0d743b2804c21d19c5331bf332b1e928c97bc9717ec59
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Busse, Christian
By organisation
Solid MechanicsFaculty of Science & Engineering
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 919 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1625 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf