Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unsupervised anomaly detection in time series with recurrent neural networks
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Oövervakad avvikelsedetektion i tidsserier med neurala nätverk (Swedish)
Abstract [en]

Artificial neural networks (ANN) have been successfully applied to a wide range of problems. However, most of the ANN-based models do not attempt to model the brain in detail, but there are still some models that do. An example of a biologically constrained ANN is Hierarchical Temporal Memory (HTM). This study applies HTM and Long Short-Term Memory (LSTM) to anomaly detection problems in time series in order to compare their performance for this task. The shape of the anomalies are restricted to point anomalies and the time series are univariate. Pre-existing implementations that utilise these networks for unsupervised anomaly detection in time series are used in this study. We primarily use our own synthetic data sets in order to discover the networks’ robustness to noise and how they compare to each other regarding different characteristics in the time series. Our results shows that both networks can handle noisy time series and the difference in performance regarding noise robustness is not significant for the time series used in the study. LSTM outperforms HTM in detecting point anomalies on our synthetic time series with sine curve trend but a conclusion about the overall best performing network among these two remains inconclusive.

Abstract [sv]

Artificiella neurala nätverk (ANN) har tillämpats på många problem. Däremot försöker inte de flesta ANN-modeller efterlikna hjärnan i detalj. Ett exempel på ett ANN som är begränsat till att efterlikna hjärnan är Hierarchical Temporal Memory (HTM). Denna studie tillämpar HTM och Long Short-Term Memory (LSTM) på avvikelsedetektionsproblem i tidsserier för att undersöka vilka styrkor och svagheter de har för detta problem. Avvikelserna i denna studie är begränsade till punktavvikelser och tidsserierna är i endast en variabel. Redan existerande implementationer som utnyttjar dessa nätverk för oövervakad avvikelsedetektionsproblem i tidsserier används i denna studie. Vi använder främst våra egna syntetiska tidsserier för att undersöka hur nätverken hanterar brus och hur de hanterar olika egenskaper som en tidsserie kan ha. Våra resultat visar att båda nätverken kan hantera brus och prestationsskillnaden rörande brusrobusthet var inte tillräckligt stor för att urskilja modellerna. LSTM presterade bättre än HTM på att upptäcka punktavvikelser i våra syntetiska tidsserier som följer en sinuskurva men en slutsats angående vilket nätverk som presterar bäst överlag är fortfarande oavgjord.

Place, publisher, year, edition, pages
2019. , p. 50
Series
TRITA-EECS-EX ; 2019:348
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-259655OAI: oai:DiVA.org:kth-259655DiVA, id: diva2:1352779
Supervisors
Examiners
Available from: 2019-09-24 Created: 2019-09-19 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(4655 kB)1485 downloads
File information
File name FULLTEXT01.pdfFile size 4655 kBChecksum SHA-512
4fb62376458b1bf3b47fe2fecbae60d00de8ec725fc6028f883c1da8ef0a4a34b104a0ff7a693ce8127be25e51b7034e238610e6e394958ec181eb6593f6d045
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1486 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 864 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf