Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy savings and greenhouse gas mitigation potential in the Swedish wood industry
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-9548-6335
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-7798-0471
2019 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 187, article id 115919Article in journal (Refereed) Published
Abstract [en]

Improving energy efficiency in industry is recognized as one of the most crucial actions for mitigating climate change. The lack of knowledge regarding energy end-use makes it difficult for companies to know in which processes the highest energy efficiency potential is located. Using a case study design, the paper provides a taxonomy for energy end-use and greenhouse gas (GHG) emissions on a process and energy carrier level. It can be seen that drying of wood is the largest energy using and GHG emitting process in the studied companies. The paper also investigates applied and potentially viable energy key performance indicators (KPIs). Suggestions for improving energy KPIs within the wood industry include separating figures for different wood varieties and different end-products and distinguishing between different drying kiln technologies. Finally, the paper presents the major energy saving and carbon mitigating measures by constructing conservation supply curves and marginal abatement cost curves. The energy saving potential found in the studied companies indicates that significant improvements might be achieved throughout the Swedish wood industry. Even though the scope of this paper is the Swedish wood industry, several of the findings are likely to be relevant in other countries with a prominent wood industry.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 187, article id 115919
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:liu:diva-160259DOI: 10.1016/j.energy.2019.115919ISI: 000496334500068Scopus ID: 2-s2.0-85071357226OAI: oai:DiVA.org:liu-160259DiVA, id: diva2:1351269
Note

Funding agencies: Swedish Agency for Marine and Water Management [802-0082-17]; Swedish Environmental Protection Agency

Available from: 2019-09-13 Created: 2019-09-13 Last updated: 2021-12-28Bibliographically approved
In thesis
1. Enabling industrial energy benchmarking: Process-level energy end-use, key performance indicators, and efficiency potential
Open this publication in new window or tab >>Enabling industrial energy benchmarking: Process-level energy end-use, key performance indicators, and efficiency potential
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

One of the greatest challenges of our time is global climate change. A key strategy for mitigating the emission of greenhouse gases is the improvement of energy efficiency. Manufacturing industry stands for a large share of global energy end-use but has yet to achieve its full energy efficiency potential. A barrier to untapping this potential is the lack of detailed data on industrial energy end-use at the process level, preventing the development of sound, bottom-up energy key performance indicators (KPIs). This hampers the ability to create a profound strategy for improving industrial energy efficiency because it is not known in which end-use processes the largest energy efficiency potential is to be found. Increasing knowledge about energy end-use at the process level also increases the possibility for energy comparisons, i.e. benchmarking, at the process level.

This thesis aimed to investigate how to further enable industrial energy benchmarking at the process level, primarily for the pulp and paper and wood industries. Relevant benchmarking requires that data on energy end-use is collected using a common, harmonized categorization of processes and that joint energy KPIs are applied. Therefore, suggestions for standardized categorizations of end-use processes were investigated for the studied industries.

Based on the calculations, and under the assumptions made in this thesis for estimating the energy efficiency potential of end-use processes, diversity was found between industries around which type of processes have the largest efficiency potential. It also emerged that, due to the lack of detailed data about energy end-use and lack of information about energy efficiency measures, processes accounting for a significant share of the energy efficiency potential in the wood industry risk being overlooked. It is not certain that current energy policies are sufficient to reach the full potential identified. The lack of information about energy end-use and energy efficiency measures implies that neither industrial actors nor policy-makers are able to develop thorough energy strategies or roadmaps for improved energy efficiency.

While the outcomes of this thesis show that a large share of Swedish pulp and paper mills carry out energy benchmarking to some degree, energy managers emphasized that benchmarking in this particular industry is difficult because it requires a deep understanding of the industry’s heterogenous and integrated processes. This thesis proposes a widened perspective on energy benchmarking and its role in industrial energy management; namely, also considering the process of how energy KPIs are implemented within in-house energy management. A process that enhances energy management includes the continuous monitoring, visualization, and revision of KPIs. In this thesis, a method is developed that encourages the bottom-up implementation of energy KPIs in the pulp and paper industry, which further enables industrial energy benchmarking.

Abstract [sv]

En av vår tids största utmaningar är den globala klimatförändringen. En viktig strategi för att minska utsläppen av växthusgaser är att förbättra energieffektiviteten. Tillverkande industri står för en stor del av den globala energianvändningen och har fortfarande en potential för energieffektivisering som inte utnyttjats. Ett hinder mot att uppnå potentialen är bristen på detaljerad information om energianvändningen i industrins processer. Detta försvårar också för utveckling av relevanta energinyckeltal baserade på enskilda processers energianvändning. Vidare hindrar detta möjligheten för en djupgående strategi för hur man kan förbättra energieffektiviteten i tillverkande industri eftersom det inte är känt inom vilka processer som den största potentialen för energieffektivisering finns. Genom att öka kunskapen om energianvändning ökar också möjligheten att jämföra energiprestandan mellan företag, det vill säga benchmarking, på processnivå.

Denna avhandling syftade till att undersöka hur man ytterligare kan möjliggöra industriell benchmarking av energieffektivitet på processnivå, med fokus på massa- och pappersindustrin och trävaruindustrin. För relevant benchmarking krävs att energianvändningsdata sammanställs efter en gemensam och harmoniserad kategorisering av industriella processer. Det är också nödvändigt att använda sig av gemensamma energinyckeltal. Därför undersöktes i avhandlingen möjligheter till standardiserade kategoriseringar av energianvändande processer för de studerade industrierna.

Baserat på de antaganden som gjordes för att uppskatta potentialen för energieffektivisering visades att det fanns en diversitet mellan branscher för vilken typ av processer som har störst potential. Det framkom också att bristen på information om energieffektiviseringsåtgärder riskerar medföra att processer med stor potential i trävaruindustrin förbises. Det är vidare inte säkert att existerande styrmedel är tillräckliga för att uppnå hela potentialen för energieffektivisering. Bristen på information om energianvändning på processnivå och effektiviseringsåtgärder innebär att varken industriella aktörer eller beslutsfattare kan utveckla välgrundade energistrategier eller färdplaner för ökad energieffektivitet.

Även om resultaten från denna avhandling visade att en stor andel av de svenska massa- och pappersbruken praktiserar någon typ av benchmarking av energieffektivitet, betonade energimanagers att benchmarking är svårt att genomföra eftersom det kräver en djup förståelse av branschens processer. Därför föreslås ett bredare perspektiv av energibenchmarking och dess roll i energiledningsarbetet som också inkluderar processen i hur energinyckeltal implementeras. För en framgångsrik implementeringsprocess är det viktigt med kontinuerlig uppföljning, visualisering och revidering av energinyckeltalen. I den här avhandlingen har en metod utvecklats för implementering av energinyckeltal i massa- och pappersindustrin baserat på en bottom-up-approach.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 76
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2076
Keywords
Energy efficiency, energy efficiency potential, energy benchmarking, manufacturing industry, key performance indicators, industrial energy end-use
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-168342 (URN)10.3384/diss.diva-168342 (DOI)9789179298371 (ISBN)
Public defence
2020-10-16, ACAS, A-Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 40537-1Swedish Energy Agency, 40491-1Swedish Environmental Protection Agency, 802-0082-17Swedish Agency for Marine and Water Management, 802-0082-17
Available from: 2020-08-21 Created: 2020-08-20 Last updated: 2020-10-19Bibliographically approved

Open Access in DiVA

fulltext(1047 kB)364 downloads
File information
File name FULLTEXT01.pdfFile size 1047 kBChecksum SHA-512
438ac84ec533f2b53ee8841e932fa71efa678fed384039881019bd0a8a4372c82c75b817c70c00d1b2a181a62672c299b3cc68acfa435b74c1cba8e48158a746
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Johnsson, SimonAndersson, EliasThollander, PatrikKarlsson, Magnus
By organisation
Energy SystemsFaculty of Science & Engineering
In the same journal
Energy
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 378 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 714 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf