Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparison between a traditional PID controller and an Artificial Neural Network controller in manipulating a robotic arm
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
En jämförelse mellan en traditionell PIDstyrenhet och en Artificiell Neural Nätverksstyrenhet för att styra en robotarm (Swedish)
Abstract [en]

Robotic and control industry implements different control technique to control the movement and the position of a robotic arm. PID controllers are the most used controllers in the robotics and control industry because of its simplicity and easy implementation. However, PIDs’ performance suffers under noisy environments. In this research, a controller based on Artificial Neural Networks (ANN) called the model reference controller is examined to replace traditional PID controllers to control the position of a robotic arm in a noisy environment. Simulations and implementations of both controllers were carried out in MATLAB. The training of the ANN was also done in MATLAB using the Supervised Learning (SL) model and Levenberg-Marquardt backpropagation algorithm. Results shows that the ANN implementation performs better than traditional PID controllers in noisy environments.

Abstract [sv]

Robotoch kontrollindustrin implementerar olika kontrolltekniker för att styra rörelsen och placeringen av en robotarm. PID-styrenheter är de mest använda kontrollerna inom roboten och kontrollindustrin på grund av dess enkelhet och lätt implementering. PID:s prestanda lider emellertid i bullriga miljöer. I denna undersökning undersöks en styrenhet baserad på Artificiell Neuralt Nätverk (ANN) som kallas modellreferenskontrollen för att ersätta traditionella PID-kontroller för att styra en robotarm i bullriga miljöer. Simuleringar och implementeringar av båda kontrollerna utfördes i MATLAB. Utbildningen av ANN:et gjordes också i MATLAB med hjälp av Supervised Learning (SL) -modellen och LevenbergMarquardt backpropagationsalgoritmen. Resultat visar att ANN-implementeringen fungerar bättre än traditionella PID-kontroller i bullriga miljöer.

Place, publisher, year, edition, pages
2019. , p. 29
Series
TRITA-EECS-EX ; 2019:398
Keywords [en]
Artificial Intelligence, Artificial Neural Network, Control System, PID Controller, Model Reference Controller, Robot arm
Keywords [sv]
Artificiell Intelligens, Artificiell Neuralt Nätverk, Kontroll System, PID-kontroller, Modellreferenskontroller, Robotarm
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-259365OAI: oai:DiVA.org:kth-259365DiVA, id: diva2:1351191
Supervisors
Examiners
Available from: 2019-09-13 Created: 2019-09-13 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(1473 kB)10233 downloads
File information
File name FULLTEXT01.pdfFile size 1473 kBChecksum SHA-512
b4f12c6bd7ea249b836658fc99fa4222e8a61bc24d4bbea699ec8444ae9e19795b40ba0576811568cd1b7268f181e6a392c25a3db4ddffe6ebb239cb57bbdffe
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 10241 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 2142 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf