Modeling and failure prediction are important tasks in many engineering systems. For these tasks, the machine learning literature presents a large variety of models such as classification trees, random forest, artificial neural networks, among others. Standard statistical models such as the logistic regression, linear discriminant analysis, k-nearest neighbors, among others, can be applied. This work evaluates advantages and limitations of statistical and machine learning methods to predict failures in industrial robots. The work is based on data from more than five thousand robots in industrial use. Furthermore, a new approach combining standard statistical and machine learning models, named hybrid gradient boosting, is proposed. Results show that the hybrid gradient boosting achieves significant improvement as compared to statistical and machine learning methods. Furthermore, local joint information has been identified as the main driver for failure detection, whereas failure classification can be improved using additional information from different joints and hybrid models. (C) 2019 Elsevier Ltd. All rights reserved.
Funding Agencies|CISB Swedish-Brazilian Research and Innovation Center; VINNOVA sponsored Competence Center LINK-SIC