En aortaaneurysm är en komplicerad sjukdom med väldigt begränsade behandlingsmetoder. En bättre förståelse kring sjukdomen är därmed väsentligt för utvecklingen av ny medicin. Den här rapporten behandlar möjligheten att skriva ut modeller av aortaaneurysmer med samma materiella beteede som en riktig. Sådana modeller skulle vara en stor fördel i utveckling av ny medicin, eftersom de skulle tillåta forskare och läkare att både billigt och enkelt skapa pålitliga modeller i forskningssyfte. Skrivaren som undersökts är en Fused Filament Fabrication 3D-skrivare med polymeren TPU 95A som val av material. Detta genomfördes via två olika processer. Den första var materialtester med dragprovkurvor för vald polymer, samt undersökning av begränsningar med FFF-skrivare. Den andra var en finit elementanalys av en aortaaneurysm, från en röntgen med CT-angiografi. Resultaten från de två tillvägagångssätten har sedan jämförts och analyserats. Dragproverna gav TPU 95A en töjning på 2-4 %. Detta bedömdes för styvt i jämförelse med FEM-analysen, som uppmätte en cirka fem gånger större töjning. Om ett elastiskt material som uppfyller nödvändig töjning skulle användas har FFF-metoden fortfarande problem. Dessa problem innefattar instabilitet under utskrift samt ett större behov av supportmaterial, vilket riskerar att blockera flödet genom modellen. 3D-utskrift med FFF-metoden ansågs därmed ej lämpad för elastiskt ekvivalenta aneurysmmodeller, om inte tester med små deformationer utförs.
An abdominal aorta aneurysm is a very complicated condition with limited medical treatments. A better understanding of the disease is therefore vital for development of new treatment methods. This report covers the ability to print models of an aortic aneurysm with the same material properties as the real ones. Such models would be of great benefit as it would allow scientists and doctors to both easily and cheaply produce viable models for their research. The printer tested was a Fused Filament Fabrication printer with TPU 95A polymer as choice of material. This was done with a two-step process. The first step being material testing, producing stress-strain curves of the polymer and evaluating the limitations of FFF printing. The second being a finite element analysis of an aortic aneurysm from a CT angiography scan. The results from the two approaches then were compared. The material testing gave TPU 95A an elongation of 2-4 % which was deemed to stiff when compared to the FEM-analysis, that had an elongation approximately five times larger. If an elastic material to satisfy the required elongation were used, the FFF printing method still would have to deal with print stability problems and an increased need of support structures that could block the polymer blood vessel. As such FFF printing was seemed inadequate for printing elastic equivalent aortic aneurysm models unless for specific tests with small deformations.