Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enzyme catalysis towards bio-based UV-curable buildingblocks
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. (Biokatalys)
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Polymeric materials are found in virtually all areas of daily life; they are found in everything from packages keeping our food safe to the buildings where we spend our days, and the production is a worldwide industry. Although polymeric materials play a big part in sustainable solution’s, a lot can be done to develop more environmental methods for producing them. Both the process conditions and the resources that go in are important to consider. As more people understand that we need to manage our planet’s resources and ecosystem differently the demand for sustainable materials is increasing.

Catalysis is a key for designing chemistry for the environment and an interesting alternative is enzyme catalysis. Enzymes are proteins working as catalysts in biochemical reactions. One of the most prominent features of enzymes’ is their selectivity, which means that they have preferences towards forming one product over others. Using enzymes’ as catalysts in synthetic chemical reactions the selectivity can be used to produce a wide range of products without side reaction occurring. Further benefits of using enzyme catalysis include high rate acceleration and working under mild reaction conditions.

In the work presented here the selectivity and efficiency of enzymes have been combined with photochemistry in new efficient methods for the synthesis ofpolymeric materials. The enzymes used were the well-known lipase B form Candida antarctica and an esterase/acyltransferase from Mycobacterium smegmatis.

The thesis divides into three parts in which three kinds of components were synthesized by enzyme catalysis: (i) unsaturated polyesters; (ii) vinyl ether building-blocks; and (iii) bio-based polyamides. In the first two parts the efficiency and selectivity of enzyme catalysis at low temperatures were utilized to synthesize building-blocks that can be further used for photopolymerization. By using enzyme catalysis structures that can be difficult or even impossible to access with conventional chemistry have been made. In part (iii) photochemistry was used to synthesize a monomer that was polymerized by enzyme catalysis to produce polyamides.

All three parts presented in this thesis show the potential of the combination of enzymes and photochemistry to give access to polymeric materials under benign conditions. The work thus advances the capacity to manufacture building-blocks to create new sustainable polymeric materials.

Abstract [sv]

Polymermaterial används till oändligt mycket. Produktion av dem sker i hela världen, men det finns mycket att göra för att tillverka materialen på ett miljövänligare sätt. Det gäller både själva tillverkningsprocessen och vilka råvaror som används i dem. Efterfrågan av förnyelsebara råvaror till denna produktion ökar med medvetenheten om att vi måste hantera vår planets resurser och ekosystemet på ett hållbart sätt.

Katalys är en nyckel för att utforma miljövänliga processer. Till det går det attanvända enzymer. De är proteiner som fungerar som katalysatorer i biokemiska reaktioner. En av de mest framträdande egenskaperna hos dem är deras selektivitet. Det vill säga att de har en preferens för att bilda en viss produkt framför andra möjliga. Selektiviteten möjliggör syntes av spännande molekyler, utan sidoreaktioner. Fler fördelar med enzymkatalys inkluderar snabba reaktionshastigheter och möjligheten att utföra reaktioner på ett milt sätt.

I denna avhandling har selektiviteten och effektiviteten hos enzymer kombinerats med fotopolymerisation. Det ger nya effektiva metoder för att syntetisera biobaserade polymermaterial. De använda enzymerna är lipas B från Candida antarctica och ett esteras/acyltransferas från Mycobacterium smegmatis.

Avhandlingen delas upp i tre delar utifrån vilken typ av komponent som syntetiserats genom enzymkatalys: (i) omättade polyestrar; (ii) vinyleterfunktionella byggstenar; och (iii) biobaserade polyamider. I de två första delarna kombinerades de selektiva egenskaperna hos enzymermed deras förmåga att utföra effektiv katalys under milda reaktionsbetingelser. Detta för att göra byggstenar som kan reagera vidare i fotopolymerisation och bilda polymera material. Enzymkatalysen möjliggjorde skapandet av byggstenar som kan vara svåra eller rent avomöjliga att producera med konventionell kemi. I del tre användes fotokemin istället i det första steget för att syntetisera en monomer som sedan polymeriserades genom enzymkatalys till polyamider.

Alla delarna som presenteras i denna avhandling visar potentialen i att kombinera enzymkatalys med fotokemi under milda betingelser för att skapa polymermaterial. Arbetet avancerar därmed kapaciteten för att hantera och tillverka byggstenar som kan användas för att tillverka nya polymeramaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. , p. 58
Series
TRITA-CBH-FOU ; 2019:37
Keywords [en]
Enzyme, Enzymatic Polymerizations, Biocatalysis, Lipase, CalB, MsAcT, Substrate specificity, Selectivity, Polymer Chemistry, UV-curring
National Category
Biocatalysis and Enzyme Technology Polymer Chemistry
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-257773ISBN: 978-91-7873-283-8 (print)OAI: oai:DiVA.org:kth-257773DiVA, id: diva2:1348370
Public defence
2019-09-27, M3, Brinellvägen 64, Maskin, våningsplan 2, KTH Campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2019-09-05

Available from: 2019-09-05 Created: 2019-09-04 Last updated: 2022-06-26Bibliographically approved
List of papers
1. Itaconate based polyesters: Selectivity and performance of esterification catalysts
Open this publication in new window or tab >>Itaconate based polyesters: Selectivity and performance of esterification catalysts
Show others...
2018 (English)In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 103, p. 370-377Article in journal (Refereed) Published
Abstract [en]

The performance of different esterification catalysts was studied for the use in synthesis of renewable polyesters from dimethyl itaconate (DMI), dimethyl succinate (DMS) and 1,4-butanediol (BD). Itaconic acid and derivatives such as DMI are interesting monomers because of their multiple functionalities and previous work has shown great potential. However, the multiple functionalities also pose challenges to avoid side reactions such as thermally initiated, premature, radical crosslinking and/or isomerization of the 1,1-disubstituted unsaturation. Additionally, the two carboxylic acids have inherently different reactivity. One key factor to control reactions with IA is to understand the performance of different catalysts. In this study, six esterification catalysts were investigated; immobilized Candida antarctica lipase B (CalB), titanium(IV)butoxide (Ti(OBu)4), p-toluenesulfonic acid (pTSA), sulfuric acid (H2SO4), 1,8-diazabicycloundec-7-ene (DBU), and 1,5,7-triazabicyclodec-5-ene (TBD). CalB and Ti(OBu)4 were selected for further characterization with appreciable differences in catalytic activity and selectivity towards DMI. CalB was the most effective catalysts and was applied at 60 °C while Ti(OBu)4 required 160 °C for a reasonable reaction rate. CalB was selective towards DMS and the non-conjugated side of DMI, resulting in polyesters with itaconate-residues mainly located at the chain ends, while Ti(OBu)4 showed low selectivity, resulting in polyesters with more randomly incorporated itaconate units. Thermal analysis of the polyesters showed that the CalB-catalyzed polyesters were semi-crystalline, whereas the Ti(OBu)4-catalyzed polyesters were amorphous, affirming the difference in monomer sequence. The polyester resins were crosslinked by UV-initiated free radical polymerization and the material properties were evaluated and showed that the crosslinked materials had similar material properties. The films from the polyester resins catalyzed by CalB were furthermore completely free from discoloration whereas the film made from the polyester resins catalyzed with Ti(OBu)4 had a yellow color, caused by the catalyst. Thus, it has been shown that CalB can be used to attain sustainable unsaturated polyesters resins for coating applications, exhibiting equally good properties as resins obtained from traditional metal-catalysis.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Biobased, Coatings, Enzyme catalysis, Organometallic catalysis, UV-curing
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-229209 (URN)10.1016/j.eurpolymj.2018.04.017 (DOI)000434745200039 ()2-s2.0-85046353288 (Scopus ID)
Note

QC 20180601

Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2022-06-26Bibliographically approved
2. One-Component Thiol-Alkene Functional Oligoester Resins Utilizing Lipase Catalysis
Open this publication in new window or tab >>One-Component Thiol-Alkene Functional Oligoester Resins Utilizing Lipase Catalysis
2016 (English)In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935Article in journal (Refereed) Published
Abstract [en]

Chemo-enzymatic methods are powerful tools for the synthesis of novel materials. By combining the flexibility of chemical synthesis and the high selectivity of enzymes, a variety of functional materials can be achieved. In the present study, a series of α,ω-thiol telechelic oligoesters with varying amount of internal alkenes are prepared using selective lipase catalysis and are subsequently cross-linked by thiol-ene chemistry yielding alkene functional networks. Due to the reactivity of thiols and alkenes almost all present thiol-ene systems consist of two components. This work demonstrates that selective lipase catalysis in combination with renewable monomers with internal alkenes is a promising system for achieving one-component thiol-alkene functional resins with good storage stability and a high degree of thiol end-groups. The developed chemo-enzymatic route yields polymer networks with tailored amount of alkene functionalities in the final thermoset, which facilitate further postmodification.

Place, publisher, year, edition, pages
John Wiley & Sons, 2016
Keywords
Catalysis, Chemoselectivity, Functional network, Photochemistry, Telechelics, Crosslinking, Functional materials, Photochemical reactions, Resins, Synthesis (chemical), Chemo-selectivity, Enzymatic methods, Post-modification, Storage stability, Thiol-ene chemistries, Thiol-ene systems, Hydrocarbons
National Category
Chemical Sciences Physical Sciences
Identifiers
urn:nbn:se:kth:diva-186775 (URN)10.1002/macp.201500490 (DOI)000380018700002 ()2-s2.0-84959509216 (Scopus ID)
Note

QC 20160520

Available from: 2016-05-20 Created: 2016-05-13 Last updated: 2024-03-15Bibliographically approved
3. Novel sustainable synthesis of vinyl ether ester building blocks, directly from carboxylic acids and the corresponding hydroxyl vinyl ether, and their photopolymerization
Open this publication in new window or tab >>Novel sustainable synthesis of vinyl ether ester building blocks, directly from carboxylic acids and the corresponding hydroxyl vinyl ether, and their photopolymerization
Show others...
2018 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 8, no 44, p. 24716-24723Article in journal (Refereed) Published
Abstract [en]

Increased environmental awareness has led to a demand for sustainable, bio-based materials. Consequently, the development of new benign synthesis pathways utilizing a minimum of reaction steps and available bio-based building blocks is needed. In the present study, vinyl ether alcohols and functional carboxylic acids were used to synthesize bifunctional vinyl ether esters using the immobilized enzyme Candida antarctica lipase B as a catalyst. Vinyl ethers are attractive alternatives to (meth)acrylates due to low allergenic hazards, low toxicity, and fast polymerization; however, difficult synthesis limits the monomer availability. The synthesis was performed in one-pot and the described method was successful within a broad temperature range (22-90 degrees C) and in various organic solvents as well as in the bulk. The synthesis of different vinyl ether esters reached high conversions (above 90%) after less than 1 h and products were purified by removing the enzyme by filtration using only small amounts of acetone. This approach is a straightforward route to reach monomers with multiple types of functionalities that can be used as different photo-curable thermoset resins. In this work, this was demonstrated by polymerizing the monomers with cationic and radical UV-polymerization. By changing the functional carboxylic acids, the architecture of the final polymer can be tailored, herein demonstrated by two examples. In the developed versatile method, carboxylic acids can be used directly as acyl donors, constituting a more sustainable alternative to the carboxylic acid derivatives used today.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-232801 (URN)10.1039/c8ra04636k (DOI)000438939300004 ()35542160 (PubMedID)2-s2.0-85050160901 (Scopus ID)
Funder
Swedish Research Council Formas, 211-2013-70
Note

QC 20180802

Available from: 2018-08-02 Created: 2018-08-02 Last updated: 2022-09-23Bibliographically approved
4. Tailoring Thermo-Mechanical Properties of Cationically UV-Cured Systems by a Rational Design of Vinyl Ether Ester Oligomers using Enzyme Catalysis
Open this publication in new window or tab >>Tailoring Thermo-Mechanical Properties of Cationically UV-Cured Systems by a Rational Design of Vinyl Ether Ester Oligomers using Enzyme Catalysis
Show others...
2018 (English)In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935, Vol. 219, no 21, article id 1800335Article in journal (Refereed) Published
Abstract [en]

There is a demand for new sustainable polymeric materials. Vinyl ethers are, in this context, attractive oligomers since they polymerize fast, are non-toxic, and can be polymerized under ambient conditions. The availability of vinyl ether oligomers is, however, currently limited due to difficulties in synthesizing them without using tedious synthesis routes. This work presents the synthesis of a series of vinyl ether ester oligomers using enzyme catalysis under solvent-free conditions and the subsequent photoinduced cationic polymerization to form polymer thermosets with T(g)s ranging from -10 to 100 degrees C. The whole process is very efficient as the synthesis takes less than 1 h with no need for purification and the crosslinking is complete within 2 min.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH, 2018
Keywords
biocatalysis, cationic polymerization, photopolymerization, solvent free, vinyl ethers
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-239808 (URN)10.1002/macp.201800335 (DOI)000449760300003 ()2-s2.0-85054513248 (Scopus ID)
Note

QC 20190107

Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2022-06-26Bibliographically approved
5. Mono-substitution of symmetric diesters: selectivity of Mycobacterium smegmatis acyltransferase variants
Open this publication in new window or tab >>Mono-substitution of symmetric diesters: selectivity of Mycobacterium smegmatis acyltransferase variants
2019 (English)In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761Article in journal (Refereed) Published
Abstract [en]

A method for selectively reacting one, out of two identical carboxylic esters in a symmetric diester has been developed. An esterase from Mycobacterium smegmatis (MsAcT) has a restricted active site resulting in a narrow acyl donor specificity. This constraint was used to develop a selective synthesis route from divinyl adipate (a symmetric diester) towards mixed vinyl adipate esters. To find a suitable catalyst, the wild type (wt) MsAcT and two MsAcT variants: a single point mutant (L12A) and a double point mutant (T93A/F154A), were immobilized and studied under solvent-free conditions. Out of the tested catalysts, MsAcT L12A was the most selective for mono-transesterification of divinyl adipate. When divinyl adipate was reacted with 1.5 equivalents of a hydroxyl vinyl ether full conversion of DVA was observed yielding over 95% mixed diester. Furthermore, the limitations for longer dicarboxylic esters were studied, showing that MsAcT T93A/F154A tolerated up to at least dimethyl sebacate.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019
National Category
Other Biological Topics
Identifiers
urn:nbn:se:kth:diva-256565 (URN)10.1039/C9CY01181A (DOI)000487788800006 ()2-s2.0-85072780268 (Scopus ID)
Funder
Swedish Research Council Formas, 211-2013-70
Note

QC 20190903

Available from: 2019-08-28 Created: 2019-08-28 Last updated: 2024-03-15Bibliographically approved
6. Lipase Catalyzed Synthesis of renewable plant oil-based polyamides
Open this publication in new window or tab >>Lipase Catalyzed Synthesis of renewable plant oil-based polyamides
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Enzyme catalyzed synthesis towards renewable polyamides was investigated using Candida antarctica lipase B. A fatty acid-derived AB-type functional monomer, having one amine and one methyl ester functionality was homopolymerized at 80 and 140°C. Additionally, the organobase 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was used as catalyst. The results from the two catalysts were comparable. However, the amount of lipase added was 1200 times lower showing that the lipase was a more efficient catalyst for this system as compared to TBD. Moreover, the AB type monomer was copolymerized with 1,12-diaminododecan to synthesize oligoamides of two different lengths.

Keywords
Candida antarctica lipase B; bio-based polyamides; enzymatic polymerization
National Category
Biocatalysis and Enzyme Technology
Research subject
Biotechnology; Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-257676 (URN)
Note

QCR 20190903

Available from: 2019-09-02 Created: 2019-09-02 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

Enzyme catalysis towards bio-based UV-curable buildingblocks(4489 kB)1554 downloads
File information
File name FULLTEXT01.pdfFile size 4489 kBChecksum SHA-512
3e12d1a9b1dd5639113b1131b60ea7cb6a1055eef1c57c5167f813bef1200a593704e9b0146f449bd2e38b1a9875eb4f7dbe4999c5bce5594fb839878453a9da
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Finnveden, Maja
By organisation
Industrial Biotechnology
Biocatalysis and Enzyme TechnologyPolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 1556 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 904 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf