CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt189",{id:"formSmash:upper:j_idt189",widgetVar:"widget_formSmash_upper_j_idt189",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt197_j_idt203",{id:"formSmash:upper:j_idt197:j_idt203",widgetVar:"widget_formSmash_upper_j_idt197_j_idt203",target:"formSmash:upper:j_idt197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Eigenvalue analysis for summation-by-parts finite difference time discretizationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2019. , p. 35
##### Series

LiTH-MAT-R, ISSN 0348-2960 ; 2019:9
##### Keywords [en]

Time integration, Initial value problem, Summation-by-parts operators, Finite difference methods, Eigenvalue problem
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-160009ISRN: LiTH-MAT-R-2019/09-SEOAI: oai:DiVA.org:liu-160009DiVA, id: diva2:1347842
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt711",{id:"formSmash:j_idt711",widgetVar:"widget_formSmash_j_idt711",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt719",{id:"formSmash:j_idt719",widgetVar:"widget_formSmash_j_idt719",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt738",{id:"formSmash:j_idt738",widgetVar:"widget_formSmash_j_idt738",multiple:true}); Available from: 2019-09-02 Created: 2019-09-02 Last updated: 2019-09-03Bibliographically approved
##### In thesis

Diagonal norm finite-difference based time integration methods in summation-by-parts form are investigated. The second, fourth and sixth order accurate discretizations are proven to have eigenvalues with strictly positive real parts. This leads to provably invertible fully-discrete approximations of initial boundary value problems.

Our findings also allow us to conclude that the second, fourth and sixth order time discretizations are stiffly accurate, strongly *S*-stable and dissipatively stable Runge-Kutta methods. The procedure outlined in this article can be extended to even higher order summation-by-parts approximations with repeating stencil.

1. Eigenvalue analysis and convergence acceleration techniques for summation-by-parts approximations$(function(){PrimeFaces.cw("OverlayPanel","overlay1348178",{id:"formSmash:j_idt1485:0:j_idt1492",widgetVar:"overlay1348178",target:"formSmash:j_idt1485:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2060",{id:"formSmash:j_idt2060",widgetVar:"widget_formSmash_j_idt2060",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2116",{id:"formSmash:lower:j_idt2116",widgetVar:"widget_formSmash_lower_j_idt2116",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2117_j_idt2119",{id:"formSmash:lower:j_idt2117:j_idt2119",widgetVar:"widget_formSmash_lower_j_idt2117_j_idt2119",target:"formSmash:lower:j_idt2117:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});