Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Grid-Tied Solar Photovoltaic (PV) System with Battery storage: A Brief Techno-Economic Analysis
Halmstad University, School of Business, Engineering and Science.
2019 (English)Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy(LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative.

Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well.

This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective.

The results show that a PV system consisting of four 270W solar panels, a battery bank of eight 150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy (LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative.

Place, publisher, year, edition, pages
2019. , p. 34
Keywords [en]
Off-grid, Grid-tied, Solar PV, Batteries, Renewable energy, Techno-economic analysis
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:hh:diva-40444OAI: oai:DiVA.org:hh-40444DiVA, id: diva2:1345232
Subject / course
Energy Technology
Educational program
Master's Programme in Renewable Energy Systems, 60 credits
Presentation
2019-05-27, N104, Kristian IV:s väg 3, 301 18 Halmstad, Halmstad, 13:00 (English)
Supervisors
Examiners
Available from: 2019-08-23 Created: 2019-08-23 Last updated: 2019-08-23Bibliographically approved

Open Access in DiVA

fulltext(1912 kB)24 downloads
File information
File name FULLTEXT02.pdfFile size 1912 kBChecksum SHA-512
3cabf21119df2ffc29e578dc4767b268211155d127f84868dd5a711d3bf18eb1adc0588bfbb0e6251fadfa42dd203a54b9cdef04cbf6746d1fc781d4c78a11ef
Type fulltextMimetype application/pdf

By organisation
School of Business, Engineering and Science
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 24 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf