Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Clock synchronization over networks - Identifiability of the sawtooth model
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0003-3054-7210
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.
Ericsson Research.ORCID iD: 0000-0001-7450-8681
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-2718-0262
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this paper, we analyze the two-node joint clocksynchronization and ranging problem. We focus on the case of nodes that employ time-to-digital converters to determine the range between them precisely. This specific design leads to a sawtooth model for the captured signal, which has not been studied in detail before from an estimation theory standpoint. In the study of this model, we recover the basic conclusion of a well-known article by Freris, Graham, and Kumar in clock synchronization. Additionally, we discover a surprising identifiability result on the sawtooth signal model: noise improves the theoretical condition of the estimation of the phase and offset parameters. To complete our study, we provide performance references for joint clock synchronization and ranging. In particular, we present the Cramér-Rao lower bounds that correspond to a linearization of our model, as well as a simulation study on the practical performance of basic estimation strategies under realistic parameters. With these performance references, we enable further research in estimation strategies using the sawtooth model and pave the path towards industrial use.

Keywords [en]
Clock synchronization, ranging, identifiability, sawtooth model, sensor networks, round-trip time (RTT)
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Control Engineering Signal Processing Telecommunications
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-256072OAI: oai:DiVA.org:kth-256072DiVA, id: diva2:1343762
Note

QC 20190820

Under review at the IEEE Transactions on Control Systems Technology.

Available from: 2019-08-19 Created: 2019-08-19 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Inverse problems in signal processing: Functional optimization, parameter estimation and machine learning
Open this publication in new window or tab >>Inverse problems in signal processing: Functional optimization, parameter estimation and machine learning
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Inverse problems arise in any scientific endeavor. Indeed, it is seldom the case that our senses or basic instruments, i.e., the data, provide the answer we seek. It is only by using our understanding of how the world has generated the data, i.e., a model, that we can hope to infer what the data imply. Solving an inverse problem is, simply put, using a model to retrieve the information we seek from the data.

In signal processing, systems are engineered to generate, process, or transmit signals, i.e., indexed data, in order to achieve some goal. The goal of a specific system could be to use an observed signal and its model to solve an inverse problem. However, the goal could also be to generate a signal so that it reveals a parameter to investigation by inverse problems. Inverse problems and signal processing overlap substantially, and rely on the same set of concepts and tools. This thesis lies at the intersection between them, and presents results in modeling, optimization, statistics, machine learning, biomedical imaging and automatic control.

The novel scientific content of this thesis is contained in its seven composing publications, which are reproduced in Part II. In five of these, which are mostly motivated by a biomedical imaging application, a set of related optimization and machine learning approaches to source localization under diffusion and convolutional coding models are presented. These are included in Publications A, B, E, F and G, which also include contributions to the modeling and simulation of a specific family of image-based immunoassays. Publication C presents the analysis of a system for clock synchronization between two nodes connected by a channel, which is a problem of utmost relevance in automatic control. The system exploits a specific node design to generate a signal that enables the estimation of the synchronization parameters. In the analysis, substantial contributions to the identifiability of sawtooth signal models under different conditions are made. Finally, Publication D brings to light and proves results that have been largely overlooked by the signal processing community and characterize the information that quantized linear models contain about their location and scale parameters.

Abstract [sv]

Inversa problem uppstår vid alla vetenskapliga undersökningar. Våra sinnen och mätinstrument -rådata -ger faktiskt sällan svaren vi letar efter. Vi behöver då utveckla vår förståelse av hur data genererats, d.v.s., använda en modell, för att kunna dra korrekta slutsatser. Att lösa inversa problem är,enkelt uttryckt, att använda modeller för att få fram den information man vill ha från tillgängliga data.

Signalbehandling handlar om utveckling av system som skapar, behandlar eller överför signaler (d.v.s., indexerade data) för att nå ett visst mål. Ett exempel på mål för en sådant system är att lösa ett inverst problem utifrån den analyserade signalen med hjälp av en modell. Signalbehandling kan dock även handla om att skapa en signal, så att denna avslöjar en parameter för utredning genom ett inverst problem. Inversa problem och signalbehandling är två fält som överlappar i stor utsträckning, och som använder sig av samma koncept och verktyg. Denna avhandling utforskar gränslandet mellan dessa två fält, och presenterar resultat inom modellering, optimering, statistik, maskininlärning, biomedicinsk avbildning och automatisk kontroll.

Det nya vetenskapliga innehållet i den här avhandlingen är baserat på de sju artiklar som återges här i Del II. I fem av dessa artiklar beskrivs ett antal relaterade metoder för optimering och maskininlärning för källokalisering medhjälp av diffusions- och konvolutionsmodellering, med tillämpningar framförallt inom biomedicinsk bildbehandling. Dessa inkluderas i Publikationer A, B,E, F och G, och behandlar också modellering och simulering av en familj av bildbaserade immunkemiska detektionsmetoder. Publikation C presenterar analys av ett system för klocksynkronisering mellan två noder förbundna med en kanal, vilket är ett problem med särskild relevans för automatisk kontroll. Systemet använder en specifik noddesign för att generera en signal som möjliggör skattning av synkroniseringsparametrarna. Analysen bidrar avsevärt till metodiken för att identifiera sågtandsmönstrande signalmodeller under olika förhållanden. Avslutningsvis presenteras i Publikation D resultat som tidigare i stora drag förbisetts inom signalbehandlingsfältet. Här karaktäriseras även den information som kvantiserade linjära modeller innehåller om deras läges- och skalparametrar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 131
Series
TRITA-EECS-AVL ; 2019:51
Keywords
inverse problems, signal processing, machine learning, biomedical imaging, optimization, proximal optimization, regularization, mathematical modeling, identifiability, likelihood, logconcavity, immunoassays, convolutional coding, functional analysis, abstract inference, learned iterations, unrolled algorithms
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Signal Processing Probability Theory and Statistics Medical Imaging Telecommunications
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-256079 (URN)978-91-7873-213-5 (ISBN)
Public defence
2019-09-16, F3, Lindstedtsvägen 26, Stockholm, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20190820

Available from: 2019-08-20 Created: 2019-08-19 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

delAguilaPla_Pellaco_Dwivedi_Handel_Jalden_Clock-sync.pdf(1023 kB)328 downloads
File information
File name FULLTEXT01.pdfFile size 1023 kBChecksum SHA-512
90b960c4b6c25c41f776afc369e8373b945803cd0ac97cc399dc7bc05855348ff3518733c88515c2e29f3c807db2d85afdf8117273369ac842fe145edb70c14d
Type fulltextMimetype application/pdf

Other links

arXiv versionGitHub repository

Search in DiVA

By author/editor
del Aguila Pla, PolPellaco, LissyDwivedi, SatyamHändel, PeterJaldén, Joakim
By organisation
Information Science and Engineering
Electrical Engineering, Electronic Engineering, Information EngineeringControl EngineeringSignal ProcessingTelecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 328 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 327 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf