Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy simulation model for commercial buildings Beridarebanan 4, 11 and 77, with ice thermal storage
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

District cooling companies enforce a large penalty based on peak demands, which current cooling methods do not address properly. Building developers are exploring alternatives methods to reduce the said peak demands. The use of Ice Thermal Storage is an nontraditional method within the Scandinavian countries, but has shown to be a method to peak shave as well as load shifting in other regions of the worlds. The goal of the thesis was to "investigate the potential of ice thermal storage for cooling demand and peak shaving for Beridarebanan 4, 11, 77". The energy simulation was accomplished using the building performance simulator software IES VE. As inputs to the simulation, building data from the renovation project and corresponding weather data were used. The resulting simulation model was validated against renovated data with differences of 3,3% and 41,9% for the heating and cooling loads, respectively. The large discrepancy within cooling was determined to be weighted heavily by cooling strategy implemented within the building. When similar cooling strategies were implemented results were consistent with one another. This validation was investigated on a building, zone, and room level to look for consistency. The resulting simulated heating and cooling demands from IES VE were input into a then created ice thermal storage controller within MS Excel. In all, with the stable electrical and district cooling prices, a payback of 12 years was calculated for a 4,5 MWh, 6 hour storage ITS system. Results also show that for a 6 hour storage capacity,the controller exceeded the 1 000 kW price tier 4 hours out of the entire year, making it an ideal storage size. Current Swedish Electrical Market incentivize peak shaving rather than energy saving, accounting for nearly 80% of the yearly savings. The margin for earning more for the energy savings has negative consequences for potentially exceeding the 1 000 kW cooling threshold.

Place, publisher, year, edition, pages
2019. , p. 55
Series
TRITA-ITM-EX ; 2019:127
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-256068OAI: oai:DiVA.org:kth-256068DiVA, id: diva2:1343731
Subject / course
Energy Technology
Educational program
Degree of Master
Presentation
2019-04-30, 00:00
Supervisors
Examiners
Available from: 2019-08-19 Created: 2019-08-19 Last updated: 2019-08-19Bibliographically approved

Open Access in DiVA

fulltext(1754 kB)27 downloads
File information
File name FULLTEXT01.pdfFile size 1754 kBChecksum SHA-512
a9ecab9a28fb021c7764da685bbb4fb56a37f0785c1c200662403fcf242fbe5c65c22146e8c9b66ddc0eea2b936510929f4a66017728be027a1d11a3e2955a03
Type fulltextMimetype application/pdf

By organisation
Energy Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf