Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Channel Reconstruction for High-Rank User Equipment
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In a 5 Generation massive Multiple Input Multiple Output radio network, the Channel State Information is playing a central role in the algorithm design and system evaluation. However, Acquisition of Channel State Information consumes system resources (e.g. time, frequency) which in turn decrease the link utilization, i.e. fewer resources left for actual data transmission. This problem is more apparent in a scenario when User Equipment terminals have multi-antennas and it would be beneficial to obtain Channel State Information between Base Station and different User Equipment antennas e.g. for purpose of high rank (number of streams) transmission towards this User Equipment. Typically, in current industrial implementations, in order to not waste system resources, Channel State Information is obtained for only one of the User Equipment antennas which then limits the downlink transmission rank to 1. Hence, we purpose a method based on Deep learning technique. In this paper, multi-layer perception and convolutional neural network are implemented. Data are generated by MATLAB simulator using the parameters provided by Huawei Technologies Co., Ltd. Finally, the model proposed by this project provides the best performance compared to the baseline algorithms.

Abstract [sv]

I ett 5-generationsmassivt massivt multipel-inmatningsradio-nätverk spelar kanalstatens information en central roll i algoritmdesignen och systemutvärderingen. Förvärv av Channel State Information konsumerar emellertid systemresurser (t.ex. tid, frekvens) som i sin tur minskar länkanvändningen, dvs färre resurser kvar för faktisk dataöverföring. Detta problem är mer uppenbart i ett scenario när användarutrustningsterminaler har flera antenner och det skulle vara fördelaktigt att erhålla kanalstatusinformation mellan basstationen och olika användarutrustningsantenner, t.ex. för överföring av hög rang (antal strömmar) till denna användarutrustning. I nuvarande industriella implementeringar erhålls kanalstatusinformation för endast en av användarutrustningens antenner för att inte slösa bort systemresurser, vilket sedan begränsar överföringsrankningen för nedlänkning till 1. Därför syftar vi på en metod baserad på Deep learning-teknik. I detta dokument implementeras flerskiktsuppfattning och inblandat neuralt nätverk. Data genereras av MATLAB-simulator med hjälp av parametrarna som tillhandahålls av Huawei Technologies Co., Ltd. Slutligen ger modellen som föreslås av detta projekt bästa prestanda jämfört med baslinjealgoritmerna.

Place, publisher, year, edition, pages
2019.
Series
TRITA-EECS-EX ; 2019:257
Keywords [en]
Deep learning; 5G; massive MIMO; Channel reconstruction; Telecommunication; Artificial Intelligence
Keywords [sv]
Djup lärning; 5G; massiv MIMO; Kanalrekonstruktion; Telekommunikation; Artificiell intelligens
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-256064OAI: oai:DiVA.org:kth-256064DiVA, id: diva2:1343686
External cooperation
Huawei Technology
Examiners
Available from: 2019-08-19 Created: 2019-08-19 Last updated: 2019-08-19Bibliographically approved

Open Access in DiVA

fulltext(2610 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 2610 kBChecksum SHA-512
882027e324d9d44d7500fb4c1399e620abf061960c3a40220f1e693b97af0ec0f92a82c566cccb4eb13d085e765e2b6f84421b6fef53c4b783695f8a46a68594
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf