In this paper, we present a user study on gener-ated beat gestures for humanoid agents. It has been shownthat Human-Robot Interaction can be improved by includingcommunicative non-verbal behavior, such as arm gestures. Beatgestures are one of the four types of arm gestures, and are knownto be used for emphasizing parts of speech. In our user study,we compare beat gestures learned from training data with hand-crafted beat gestures. The first kind of gestures are generatedby a machine learning model trained on speech audio andhuman upper body poses. We compared this approach with threehand-coded beat gestures methods: designed beat gestures, timedbeat gestures, and noisy gestures. Forty-one subjects participatedin our user study, and a ranking was derived from pairedcomparisons using the Bradley Terry Luce model. We found thatfor beat gestures, the gestures from the machine learning modelare preferred, followed by algorithmically generated gestures.This emphasizes the promise of machine learning for generating communicative actions.
QC 20190815