Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mikrobearbetning av Kollagen Baserad Hydrogel Med en Femtosecond Laser För Vaskulär Vävnadsteknik
KTH, School of Engineering Sciences (SCI).
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Femtosecond Laser Micromachining of Collagen Hydrogels for Vascular Tissue Engineering (English)
Abstract [sv]

Tredimensionell cell odling (3D model) har visats sig vara en mer effektiv metod för att efterlinka in-vivo celler än de tvådimensionella metoder (2D model) som används idag. En utmaning som förhindrar användningen av 3D modeller är den begränsade diffusionen av syre inom dem. Endast celler som är i närheten av en yttre yta överlever. Detta problem skulle kunna motarbetas genom att introducera ett kärlsystem. Målet med denna studie är att undersöka om det är möjligt att använda sig utav en femtosecond laser för att skapa kanaler inom kollagen baserade hydrogeler. Detta görs genom att experimentellt bearbeta hydrogelen med femtosecond lasern och undersöka om någon synlig manipulation har gjorts. Resultatet visar att kanaler kan skapas inuti hydrogelen med hjälp utav en femtosecond laser. Vidare visar resultatet att tjockleken på dessa kanaler varierar med olika laser parametrar. Femtosecond lasern verkar vara en god kandidat för att skapa artificiella kärlsystem och därmed bidra till ny forskning inom läkemedelsutveckling.

Abstract [en]

Three-dimensional cell cultivation (3D models) has been shown to be a more effective way of mimicking in vivo cells compared to the 2D models used today. One challenge that prevents the wide use of 3D models is the limited diffusion of oxygen within them. Only cells located close to the surface survive. The introduction of a vascular system would counteract this problem and aid in making 3D models viable for drug development research. The aim is to study the possibility of using a femtosecond laser to induce perfusable channels into collagen-based hydrogels. This is done by experimentally processing the hydrogel with a femtosecond laser and studying if visible manipulation is made. The results show that perfusable channels can be induced into the bulk of the collagen-based hydrogel. Further results also suggest how the size of the channel varies with different parameters. Femtosecond lasers seem to be a good candidate for creating artificial vascular systems and advancing current methods in drug development.

Place, publisher, year, edition, pages
2019.
Series
TRITA-SCI-GRU ; 2019:244
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-255864OAI: oai:DiVA.org:kth-255864DiVA, id: diva2:1342585
Supervisors
Examiners
Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(2603 kB)127 downloads
File information
File name FULLTEXT01.pdfFile size 2603 kBChecksum SHA-512
1604122d7876b7ae35cdb80a4a68c7def325751bef8e7dcafeae36a4870752a3a1b27049e3f530591b9c16715de26c872dd3a79147c1ff0217d7b92fb2b36b2c
Type fulltextMimetype application/pdf

By organisation
School of Engineering Sciences (SCI)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 127 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 276 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf