Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maskininlärningsalgoritmer för klassificering av barnkläder efter kön
KTH, School of Engineering Sciences (SCI).
KTH, School of Engineering Sciences (SCI).
2019 (Swedish)Independent thesis Basic level (degree of Bachelor of Fine Arts), 10 credits / 15 HE creditsStudent thesisAlternative title
Performance of Machine Learning Algorithms When Classifying Children’s Clothes According to (English)
Abstract [sv]

I denna rapport undersöker vi en maskins förmåga att klassificera barnkläder efter kön. Detta genomfördes genom att implementera tre maskininlärningsalgoritmer; kernel ridge regression, regularized extreme learning machine och support vector machine. En Gaussisk RBF kärna användes för både ridge regression och support vector machine. För extreme learning machine användes softplus som aktiveringsfunktion. Algoritmerna tränades och testades på ett dataset bestående av 1000 bilder hämtade från det svenska klädföretaget H&M. Kläderna var kategoriserade som för barn mellan åldrarna 18 månader och tio år. Vi fann att support vector machine uppnådde bäst resultat på datasetet med en klassificeringsprecision på 76.9%. De två andra metoderna uppnådde dock liknande precision; 76.6% för kernel ridge regression och 76.7% för regularized extreme learning machine.

Abstract [en]

In this paper, we investigate a machine’s ability to classify children’s clothes according to gender. This was done by implementing three different machine learning algorithms; kernel ridge regression, regularized extreme learning machine, and support vector machine. A Gaussian radial basis function kernel was used for both ridge regression and support vector machine, and for extreme learning machine the softplus function was used as activation. The algorithms were trained and tested on a data set consisting of one thousand images gathered from the Swedish clothing-retail company H&M. The clothes were categorized as being for children from the ages of eighteen months to ten years.

Place, publisher, year, edition, pages
2019.
Series
TRITA-SCI-GRU ; 2019:247
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-255827OAI: oai:DiVA.org:kth-255827DiVA, id: diva2:1342270
Supervisors
Examiners
Available from: 2019-08-13 Created: 2019-08-13 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(441 kB)159 downloads
File information
File name FULLTEXT01.pdfFile size 441 kBChecksum SHA-512
966aa85231ad0c9a25e7245e027ab898cdd7b1fab295b9b336a44ed723e78265b5feb428f8c2d3f1216a08088ed505222c5e0bd41fce1b816d2ec977ae90aec4
Type fulltextMimetype application/pdf

By organisation
School of Engineering Sciences (SCI)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 159 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 353 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf