Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maskininlärning och kvantmekanik
KTH, School of Engineering Sciences (SCI).
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Machine learning and quantum mechanics (English)
Abstract [sv]

Syftet med rapporten är att redovisa för hur maskininlärning kan användas för att approximera grundtillståndsenergin av kvantsystemet som motsvaras av partikeln i en låda. Ett nätverk med radialbasfunktioner har använts med nätverket som en representation av variationsvågfunktionen. Vikterna i nätverket har uppdaterats så att väntevärdet av energin minimeras. Energiminimeringen har utförts med hjälp av variations-Monte Carlo-metoden. Lösningsmetoden som presenteras har gett en bra approximation för grundtillståndsenergin av partikeln i en låda. Metoden fungerar också när en störning i form av en linjär potential är tillagd till systemet.

Abstract [en]

This thesis aims to use machine learning to solve for the ground state energy of the quantum system corresponding to the particle in a box. A radial basis function (RBF) network is used with Gaussian functions as the variational wave function. The weights in the network are updated so that the energy expectation value is minimized, which is carried out by using the variational Monte Carlo (VMC) method. The method using machine learning succeeds in finding the ground state energy for the particle in a box. The method also works when a perturbation in the form of a linear potential is added to the infinite potential well.

Place, publisher, year, edition, pages
2019.
Series
TRITA-SCI-GRU ; 2019:242
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-255825OAI: oai:DiVA.org:kth-255825DiVA, id: diva2:1342246
Supervisors
Examiners
Available from: 2019-08-13 Created: 2019-08-13 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(1398 kB)411 downloads
File information
File name FULLTEXT01.pdfFile size 1398 kBChecksum SHA-512
4a311cd603699c052bb137334ed78199889610e434f81a8d1f596923d6123e1cf384e16a4229290e97f76a79ba3500ef24f216f029d3907985ab5b5f3d869ec3
Type fulltextMimetype application/pdf

By organisation
School of Engineering Sciences (SCI)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 411 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 458 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf