Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep learning-based vehicle occupancy detection in an open parking lot using thermal camera
Dalarna University, School of Technology and Business Studies, Microdata Analysis.ORCID iD: 0000-0002-2078-3327
Dalarna University, School of Technology and Business Studies, Computer Engineering.ORCID iD: 0000-0002-1429-2345
Dalarna University, School of Technology and Business Studies, Information Systems.ORCID iD: 0000-0003-4812-4988
2020 (English)In: IET Intelligent Transport Systems, ISSN 1751-956X, E-ISSN 1751-9578, Vol. 14, no 10, p. 1295-1302Article in journal (Refereed) Published
Abstract [en]

Parking vehicle is a daunting task and a common problem in many cities around the globe. The search for parking space leads to congestion, frustration and increased air pollution. Information of a vacant parking space would facilitate to reduce congestion and subsequent air pollution. Therefore, aim of the paper is to acquire vehicle occupancy in an open parking lot using deep learning. Thermal camera was used to collect the data during varying environmental conditions such as; sunny, dusk, dawn, dark and snowy conditions. Vehicle detection with deep learning was implemented where image classification and object localization were performed for multi object detection. The dataset consists of 527 images which were manually labelled as there were no pre-labelled thermal images available. Multiple deep learning networks such as Yolo, ReNet18, ResNet50 and GoogleNet with varying layers and architectures were evaluated on vehicle detection. Yolo, GoogleNet and ResNet18 are computationally efficient detectors which took less processing time while Resnet50 produced better detection results compared to other detectors. However, ResNet18 also produced minimal miss rates and is suitable for real time vehicle detection. The detected results were compared with a template of parking spaces and IoU value is used to identify vehicle occupancy information.

Place, publisher, year, edition, pages
2020. Vol. 14, no 10, p. 1295-1302
National Category
Computer graphics and computer vision
Research subject
Research Profiles 2009-2020, Complex Systems – Microdata Analysis
Identifiers
URN: urn:nbn:se:du-30605DOI: 10.1049/iet-its.2019.0468ISI: 000573659000015Scopus ID: 2-s2.0-85091396572OAI: oai:DiVA.org:du-30605DiVA, id: diva2:1342141
Available from: 2019-08-12 Created: 2019-08-12 Last updated: 2025-02-07Bibliographically approved
In thesis
1. Developing decision support systems for last mile transportation problems
Open this publication in new window or tab >>Developing decision support systems for last mile transportation problems
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Last mile transportation is the most problematic phase of transportation needing additional research and effort. Longer waits or search times, lack of navigational directions and real-time information are some of the common problems associated with last mile transportation. Inefficient last mile transportation has an impact on the environment, fuel consumption, user satisfaction and business opportunities. Last mile problems exist in several transportation domains, such as: the landing of airplanes, docking of ships, parking of vehicles, attended home deliveries, etc. While there are dedicated inter-connected decision support systems available for ships and aircraft, similar systems are not widely utilized in parking or attended handover domains. Therefore, the scope of this thesis covers last mile transportation problems in parking and attended handover domains. One problem area for parking and attended handovers is due to lack of real-time information to the driver or consumer. The second problem area is dynamic scheduling where the handover vehicle must traverse additional distance to multiple handover locations due to lack of optimized routes. Similarly, during parking, lack of navigational directions to an empty parking space can lead to increased fuel consumption and CO2 emissions. Therefore, aim of this thesis is to design and develop decision support systems for last mile transportation problems by holistically addressing real time customer communication and dynamic scheduling problem areas. The problem areas discussed in this thesis consists of persistent issues even though they were widely discussed in the literature. In order to investigate the problem areas, microdata analysis approach was implemented in the thesis. The phases involved in Microdata analysis are: data collection, data processing, data storage, data analysis and decision-making. Other similar research domains, such as: computer science or statistics also involve phases such as data collection, processing, storage and analysis. These research domains also work in the fields of decision support systems or knowledge creation. However, knowledge creation or decision support systems is not a mandatory phase in these research domains, unlike Microdata analysis. Three papers are presented in this thesis, with two papers focusing on parking domains, while the third paper focuses on attended handover domains.

The first paper identifies available smart parking tools, applications and discusses their uses and drawbacks in relation to open parking lots. The usage of cameras in identifying parking occupancy was recognized as one of the suitable tools in this paper. The second paper uses a thermal camera to collect the parking lot data, while deep learning methodologies were used to identify parking occupancy detection. Multiple deep learning networks were evaluated for identifying parking spaces and one method was considered suitable for acquiring real time parking occupancy. The acquired parking occupancy information can be communicated to the user to address real-time customer communication problems. However, the decision support system (DSS) to communicate parking occupancy information still needs to be developed. The third paper focuses on the attended handovers domain where a decision support system was reported which addresses real-time customer communication and dynamic scheduling problems holistically. Based on a survey, customers accepted the use of mobile devices for enabling a real-time information flow for improving customer satisfaction. A pilot test on vehicle routing was performed where the decision support system reduced the vehicle routing distance compared to the route taken by the driver. The three papers work in developing decision support systems for addressing major last mile transportation problems in parking and attended handover domains, thus improving customer satisfaction, and business opportunities, and reducing fuel costs, and pollution.

Place, publisher, year, edition, pages
Borlänge: Dalarna University, 2019
Series
Dalarna Licentiate Theses ; 11
Keywords
parking spaces, attended handovers, user satisfaction, pollution, business opportunities
National Category
Transport Systems and Logistics Computer and Information Sciences
Research subject
Research Profiles 2009-2020, Complex Systems – Microdata Analysis
Identifiers
urn:nbn:se:du-30609 (URN)978-91-88679-02-4 (ISBN)
Presentation
2019-09-06, Clas Ohlsson, Borlänge, 13:00 (English)
Opponent
Supervisors
Available from: 2019-08-20 Created: 2019-08-14 Last updated: 2023-08-17
2. Parking support model for open parking lots
Open this publication in new window or tab >>Parking support model for open parking lots
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Parking is a common process performed by vehicle drivers when they arrive at their destination. It is considered to be the last mile transportation problem of personal vehicles. Some of the common problems observed by drivers are additional cruising, congestion, pollution, and driver frustration. This thesis is focused on open parking lots that provide free parking spaces. Since parking spaces are provided free, open parking lots are in high demand leading to additional cruising and pollution. One of the primary reasons for these problems is the lack of information on parking availability. Such information can be provided using a parking support model, or a smart parking system. As open parking lots do not provide any direct return on investments, no parking support models were available on the market. Therefore, this thesis aims to develop a parking support model suitable for open parking lots which can facilitate in providing real-time and short-term forecast of parking availability. This thesis also examines the magnitude of additional cruising and CO2 emissions observed in an open parking lot. A thermal camera was utilized for collecting data on open parking lots as it is not susceptible to varying illumination and environmental conditions. Since there were no pre-trained algorithms for enabling object detection using thermal camera images, a dataset was created with varying environmental and illumination conditions. This dataset was utilized by deep learning algorithms to facilitate multi-object, real-time detection. The developed parking support model facilitates in providing a real-time and short-term forecast of parking availability. Despite the use of low volume of data, the methods utilized in this thesis facilitated providing better detection and forecasting results. Algorithms, such as ResNet18 and Yolo, facilitated in providing real-time, multi-object detection with high accuracy. Similarly, a short-term forecast of parking availability was provided for the open parking lot using methods such as the Ensemble-based method, LSTM and SARIMAX. Ensemble-based method and LSTM provided better test prediction results with lower errors compared to SARIMAX. A new CO2 emissions model was proposed to estimate the magnitude of emissions observed at an open parking lot. The mean CO2 emissions of additional cruising is 2.7 times more than optimal cruising. Despite the individual CO2 emissions of vehicles being lower, aggregating CO2 emissions from multiple vehicles leads to higher pollution. This problem can be reduced by utilizing the parking support model.

Place, publisher, year, edition, pages
Borlänge: Högskolan Dalarna, 2022
Series
Dalarna Doctoral Dissertations ; 21
Keywords
parking, deep learning, pollution, cruising, detection, tracking, forecasting
National Category
Transport Systems and Logistics Computer and Information Sciences
Identifiers
urn:nbn:se:du-41094 (URN)978-91-88679-36-9 (ISBN)
Public defence
2022-06-03, room 311, 10:30 (English)
Opponent
Supervisors
Available from: 2022-05-03 Created: 2022-03-24 Last updated: 2023-08-17Bibliographically approved

Open Access in DiVA

fulltext(1006 kB)662 downloads
File information
File name FULLTEXT01.pdfFile size 1006 kBChecksum SHA-512
04dcd042ecdb7d3497bdbce76f4b4b63e144f1188b4ff15db84d7ca4983ad1e71e797c5a72d501221cc191b42e77d7668434ace2f71110bc790d0d859f0ba0d1
Type fulltextMimetype application/pdf
fulltext(2451 kB)794 downloads
File information
File name FULLTEXT02.pdfFile size 2451 kBChecksum SHA-512
92f793d1fa5d2af8596e47cc0ff99c161296e8024c28538f42ec30ee0320caa983b3b5a3fb9a61d79418c2c9847ee9977cc7056275125eeca028282a3a10cf46
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Paidi, VijayFleyeh, HasanNyberg, Roger G.
By organisation
Microdata AnalysisComputer EngineeringInformation Systems
In the same journal
IET Intelligent Transport Systems
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar
Total: 1456 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1762 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf