Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unga kvinnors egna upplevelser av hur sociala medier påverkar det psykiska måendet: En kvalitativ intervjustudie
Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
2019 (Swedish)Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
Place, publisher, year, edition, pages
2019. , p. 27
National Category
Public Health, Global Health and Social Medicine
Identifiers
URN: urn:nbn:se:miun:diva-36803OAI: oai:DiVA.org:miun-36803DiVA, id: diva2:1341070
Subject / course
Public health Science FH1
Supervisors
Examiners
Note

2019-06-03

Available from: 2019-08-07 Created: 2019-08-07 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

fulltext(990 kB)2080 downloads
File information
File name FULLTEXT01.pdfFile size 990 kBChecksum SHA-512
3c1eea297949607bdcaee3772c3c009c6c177fd6a9f36c8459388ffb39ca9f244421e27df61fe52601faf07213ce65c0ae5535a193e816ce10f2cd1d4783b85e
Type fulltextMimetype application/pdf

By organisation
Department of Health Sciences
Public Health, Global Health and Social Medicine

Search outside of DiVA

GoogleGoogle Scholar
Total: 2084 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 392 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf