Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using Machine Learning Techniques for Evaluating the Similarity of Enterprise Architecture Models
(Software Systems Architecture and Security)ORCID iD: 0000-0003-0478-9347
2019 (English)Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
Springer International Publishing , 2019. p. 563-578
National Category
Information Systems
Identifiers
URN: urn:nbn:se:kth:diva-255628DOI: 10.1007/978-3-030-21290-2_35OAI: oai:DiVA.org:kth-255628DiVA, id: diva2:1340363
Conference
Conference of Advanced Information Systems Engineering
Note

QC 20190812

Available from: 2019-08-05 Created: 2019-08-05 Last updated: 2019-08-12Bibliographically approved

Open Access in DiVA

fulltext(556 kB)53 downloads
File information
File name FULLTEXT01.pdfFile size 556 kBChecksum SHA-512
d90fafd79a9459de24a25412c42a2606adf3147c42bfa57abbc0dddfda90d3b8a7df7e8f77948cf91f7683794c3a155ee21f1a05876c784f9e6b8480d525556e
Type fulltextMimetype application/pdf

Other links

Publisher's full textConference

Search in DiVA

By author/editor
Hacks, Simon
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 53 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf