Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
IoT based Appliances Identification Techniques with Fog Computing for e-Health
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems. University of Turku, Finland . (Smart Grid, IoT 4 Health)ORCID iD: 0000-0003-2357-1108
Unaizah College of Engineering, Qassim University, Saudi Arabia; University of Monastir, Tunisia .
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems. University of Dar es Salaam, Tanzania .ORCID iD: 0000-0002-7734-7817
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems. University of Dar es Salaam, Tanzania .ORCID iD: 0000-0001-6356-7985
Show others and affiliations
2019 (English)In: Proceedings 2019 IST-Africa Week Conference (IST-Africa), Institute of Electrical and Electronics Engineers (IEEE), 2019Conference paper, Published paper (Refereed)
Abstract [en]

To improve the living standard of urban communities and to render the healthcare services sustainable and efficient, e-health system is experiencing a paradigm shift. Patients with cognitive discrepancies can be monitored and observed through the analyses of power consumption of home appliances. This paper surveys recent trends in home-based e-health services using metered energy consumption data. It also analyses and summarizes the constant impedance, constant current and constant power (ZIP) approaches for load modelling. The analysis briefly recaptures both non-intrusive and intrusive techniques. The work reports an architecture using IoT technologies for the design of a smart-meter, and fog-computing paradigm for raw processing of energy dataset. Finally, the paper describes the implementation platform based on GirdLAB-D simulation to construct accurate models of household appliances and test the machine-learning algorithm for the detection of abnormal behaviour.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2019.
Keywords [en]
e-health., home management system, Internet of Things (IoT), fog-computing, non-intrusive load monitoring and identification (NILM), smart-meter
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-241293DOI: 10.23919/ISTAFRICA.2019.8764818ISI: 000490550800003Scopus ID: 2-s2.0-85069928430OAI: oai:DiVA.org:kth-241293DiVA, id: diva2:1339255
Conference
2019 IST-Africa Week Conference (IST-Africa), Nairobi, Kenya, May 08-10, 2019
Note

Part of proceedings: ISBN 978-1-905824-63-2QC 20211012

Available from: 2019-07-27 Created: 2019-07-27 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Data-driven Implementations for Enhanced Healthcare Internet-of-Things Systems
Open this publication in new window or tab >>Data-driven Implementations for Enhanced Healthcare Internet-of-Things Systems
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Healthcare monitoring systems based on the Internet of Things (IoT) areemerging as a potential solution for reducing healthcare costs by impacting and improving the quality of health care delivery. The rising numberof elderly and chronic patient population in the world and the associatedhealthcare costs urges the application of IoT technology to improve andsupport the health care services. This thesis develops and integrates twoIoT-based healthcare systems aiming to support elderly independent livingat home. The first one involves using IoT-based remote monitoring for paindetection, while the second one detects behavioral changes caused by illnessvia profiling the appliances’ energy usage.In the first approach, an Electromyography (EMG )sensor node with aWireless Fidelity (Wi-Fi) radio module is designed for monitoring the painof patients living at home. An appropriate feature-extraction and classification algorithm is applied to the EMG signal. The classification algorithmachieves 98.5% accuracy for the experimental data collected from the developed EMG sensor node, while it achieves 99.4% classification accuracy forthe clinically approved pain intensity dataset. Moreover, the experimentalresults clearly show the relevance of the proposed approaches and provetheir suitability for real-life applications. The developed sensor node for thepain level classification method is beneficial for continuous pain assessmentto the smart home-care community.As a complement to the first approach, in the second approach, an IoTbased smart meter and a set of appliance-level load profiling methods aredeveloped to detect the electricity usage of users’ daily living at home, whichindirectly provides information about the subject’s health status. The thesishas formulated a novel methodology by integrating Non-intrusive ApplianceLoad Monitoring (NIALM) analysis with Machine Learning- (ML) basedclassification at the fog layer. The developed method allows the detectionof a single appliance with high accuracy by associating the user’s Activitiesof Daily Living (ADL). The appliances detection is performed by employinga k-Nearest Neighbors (k-NN) classification algorithm. It achieves 97.4% accuracy, demonstrating its high detection performance. Due to the low cost and reusability advantages of Field Programmable Gate Arrays (FPGA),the execution of k-NN for appliances classification model is performed onan FPGA. Its classification performance was comparable with other computing platforms, making it a cost-effective alternative for IoT-based healthcare assessment of daily living at home. The developed methods have haspractical application in assisting real-time e-health monitoring of any individual who can remain in the comfort of their normal living environment. 

Abstract [sv]

System för monitorering av hälso- och sjukvård baserade på IoT (internet of things) erbjuder idag kostnadseffektiva lösningar som många gånger kan utgöra bättre alternativ än traditionell övervakning inom vård och omsorg. Kostnader för sjukvård stiger brant, mycket på grund av en ökande andel äldre i befolkningen, och kraven på sjukhus och vårdinstanser att tillhandahålla högkvalitativa tjänster stiger därmed och blir alltmer utmanande. Denna avhandling presenterar två olika integrerade IoT-system, som utvecklats för att monitorera hälsotillståndet hos vårdbehövande och äldre personer i deras hemmiljö. Det första systemet bygger på en fjärransluten IoT-lösning för smärta, medan det andra upptäcker förändrade levnadsmönster som orsakas av sjukdom genom att monitorera el-användningen för den vårdbehövande.

I den första varianten har en elektromyografi (EMG) sensor med en wifi-modul designats för att övervaka smärtkänningar hos hemmaboende patienter. En algoritm extraherar relevanta data ur EMG signalen och utvärderar dessa för att kunna ange den smärtnivå som patienten upplever. Denna process ger 98.5 % rätt angivna smärtnivåer hos den uppmätta signalen från EMG-sensorn, men hela 99.4 % rättbestämda smärtnivåer från det kliniskt godkända testet av smärtnivå Bio Vid. De experimentella resultaten visar tydligt att den föreslagna metoden lämpar sig utmärkt för fortsatta försök på människor.

I den andra IoT-lösningen, som ska ses som ett komplement till den första, används en IoT-baserad smart mätare tillsammans med en uppsättning metoder för att bestämma belastningsprofilen för elanvändningen i den vårdbehövandes bostad och därigenom indirekt upptäcka avvikelser som indikerar att hälsotillståndet hos den inneboende har förändrats. I avhandlingen har en ny metodologi införts kallad ”non-intrusive appliance load monitoring (NIALM), som baseras på maskininlärd klassificering av ”fog layer”. Metoden gör det möjligt att urskilja enskilda el-konsumenter med stor noggrannhet genom att jämföra mätdata med hushållets ”activities of daily living”, (ADL). Detektionen av olika el-konsumenter i hushållet görs genom klassificeringsalgoritmen ”k-nearest neighbour’s” (k-NN), vilken har uppnått hela 97.4% träffsäkerhet och tydligt demonstrerar metodens användbarhet. Tack vare de låga kostnaderna och möjligheten till åter-användning hos ”field programmable gate arrays” (FPGA), har den k-NN-baserade modellen implementerats i FPGA. Prestandan för detta system visar sig, vid jämförelse med andra beräkningsplattformar, vara ett kostnadseffektivt sätt att använda IoT-baserade lösningar för monitorering av personers hälsostatus i hemmiljö.

Sammanfattningsvis visar avhandlingen på två integrerade IoT-lösningar för patientövervakning i hemmiljö, som kombinerar smärtupplevelser med ADL och därigenom kan erbjuda trygg och kostnadseffektiv assistans till vården av sjuka och äldre personer och möjliggöra för individer att leva längre i sina egna hem.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2021. p. 122
Series
TRITA-EECS-AVL
Keywords
IoT, Real_time, Smart meter, Biosignal, NIALM, Data-driven, Machine Learning, FPGA
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-304961 (URN)978-91-8040-008-4 (ISBN)
Public defence
2021-12-10, Sal C (Sal Sven-Olof Ohrvik) /zoom online link: https://kth-se.zoom.us/j/69579814475?pwd=L3ZNTmVjeWFBRWtZLythZTFnRmpOQT09, Kistagången 16, Kista., Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20211119

Available from: 2021-11-19 Created: 2021-11-19 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(367 kB)822 downloads
File information
File name FULLTEXT01.pdfFile size 367 kBChecksum SHA-512
e1033695fefe316ee5dd5e878bd4f8bf13e8a3628832ae2b780a29ed6f69ecae7cb31b1100bd39752795326e8e5fcbca245266ac412efbbe6c1ada46dc13633e
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusIEEE Xplore

Search in DiVA

By author/editor
Kelati, AmlesetKondoro, AronRwegasira, DianaTenhunen, Hannu
By organisation
Electronics and Embedded systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 822 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 433 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf